MA 16100 FINAL EXAM PRACTICE PROBLEMS

1. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-x}=\begin{array}{lllll}\text { A. }-1 & \text { B. } 0 & \text { C. } 1 & \text { D. } 2 & \text { E. Does not exist }\end{array}$
2. If $y=\left(x^{2}+1\right) \tan x$, then $\frac{d y}{d x}=$ A. $2 x \tan x+\left(x^{2}+1\right) \sec ^{2} x \quad$ B. $2 x \sec ^{2} x \quad$ C. $2 x \tan x+\left(x^{2}+1\right) \tan x$ D. $2 x \tan x+2 x \sec ^{2} x \quad$ E. $2 x \tan x$
3. If $h(x)=\left\{\begin{array}{ll}x^{2}+a, & \text { for } x<-1 \\ x^{3}-8 & \text { for } x \geq-1\end{array}\right.$ determine all values of a so that h is continuous for all values of x. $\begin{array}{lllll}\text { A. } a=-1 & \text { B. } a=-8 & \text { C. } a=-9 & \text { D. } a=-10 & \text { E. There are no values of } a\end{array}$
4. Evaluate $\lim _{x \rightarrow 0^{+}} x \cos \left(\frac{1}{x}\right)$. (Hint: $-1 \leq \cos \left(\frac{1}{x}\right) \leq 1$ for all $x \neq 0$.) A. $0 \quad$ B. $1 \quad$ C. $-1 \quad$ D. $\frac{\pi}{2} \quad$ E. Does not exist
5. If $f(x)=\frac{1}{x+3}$, then $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=$ A. $\frac{1}{4}$
$\begin{array}{ll}\text { B. } \frac{1}{16} & \text { C. }-\frac{1}{16}\end{array}$
D. $-\frac{1}{4} \quad$ E. Does not exist
6. The equation $x^{3}-x-5=0$ has one root for x between -2 and 2 . The root is in the interval: A. $(-2,-1) \quad$ B. $(-1,0) \quad$ C. $(0,1) \quad$ D. $(1,2) \quad$ E. $(-1,1)$
7. If $f(x)=\frac{1-x}{1+x}$, then $f^{\prime}(1)=\begin{array}{lllll}\text { A. }-1 & \text { B. }-\frac{1}{2} & \text { C. } 0 & \text { D. } \frac{1}{2} & \text { E. } 1\end{array}$
8. If $y=\ln \left(1-x^{2}\right)+\sin ^{2} x$, then $\frac{d y}{d x}=$ A. $\frac{1}{1-x^{2}}+\cos ^{2} x \quad$ B. $\frac{1}{1-x^{2}}+2 \sin x \cos x \quad$ C. $\frac{1}{1-x^{2}}+2 \sin x$
D. $\frac{-2 x}{1-x^{2}}+\cos ^{2} x \quad$ E. $\frac{-2 x}{1-x^{2}}+2 \sin x \cos x$
9. Find $f^{\prime \prime}(x)$ if $f(x)=\frac{1-x}{1+x} \quad$ A. $\frac{4}{(1+x)^{3}} \quad$ B. $\frac{-4}{(1+x)^{3}} \quad$ C. $-\frac{4 x}{(1+x)^{3}}+\frac{2}{(1+x)^{2}} \quad$ D. $\frac{2(1+x)^{2}-2 x(1+x)}{(1+x)^{4}} \quad$ E. -1
10. Assume that y is defined implicitly as a differentiable function of x by the equation $x y^{2}-x^{2}+y+5=0$. Find $\frac{d y}{d x}$ at $(-2,1) . \quad$ A. 9 B. $\frac{-5}{3} \quad$ C. $1 \quad$ D. $2 \quad$ E. $\frac{5}{3}$
11. Find the maximum and minimum values of the function $f(x)=3 x^{2}+6 x-10$ on the interval $-2 \leq x \leq 2$. A. max is 14 , min is -10 . B. max is -10 , min is $-13 \quad$ C. \max is 14 , min is $-13 \quad$ D. no max, min is -10 E. max is 14 , no min.
12. For a differentiable function $f(x)$ it is known that $f(3)=5$ and $f^{\prime}(3)=-2$. Use a linear approximation to get the approximate value of $f(3.02)$. $\quad \begin{array}{llllll}\text { A. } 6.02 & \text { B. } 5.02 & \text { C. } 5.04 & \text { D. } 3 & \text { E. } 4.96 .\end{array}$
13. Water is withdrawn from a conical reservoir, 8 feet in diameter and 10 feet deep (vertex down) at the constant rate of $5 \mathrm{ft}^{3} / \mathrm{min}$. How fast is the water level falling when the depth of the water in the reservoir
is 5 ft ? $\left(V=\frac{1}{3} \pi r^{2} h\right)$.
A. $\frac{15}{16 \pi} \mathrm{ft} / \mathrm{min}$
B. $\sqrt{\frac{3}{\pi}} \mathrm{ft} / \mathrm{min}$
C. $\frac{2}{\pi} \mathrm{ft} / \mathrm{min}$
D. $5 \sqrt[3]{3 / 4 \pi} \mathrm{ft} / \mathrm{min}$
E. $\frac{5}{4 \pi} \mathrm{ft} / \mathrm{min}$.
14. A rectangle is inscribed in the upper half of the circle $x^{2}+y^{2}=a^{2}$ as shown at right. Calculate the area of the largest such rectangle. $\begin{array}{llllll}\text { A. } \frac{a^{2}}{2} & \text { B. } 3 a \sqrt{2} & \text { C. } 2 a^{2} & \text { D. } 4 a^{2} & \text { E. } a^{2} \text {. }\end{array}$

15. Given that $f(x)$ is differentiable for all $x, f(2)=4$, and $f(7)=10$, then the Mean Value Theorem states that there is a number c such that \quad A. $2<c<7$ and $f^{\prime}(c)=\frac{6}{5} \quad$ B. $2<c<7$ and $f^{\prime}(c)=\frac{5}{6} \quad$ C. $4<c<10$ and $f^{\prime}(c)=\frac{6}{5} \quad$ D. $2<c<7$ and $f^{\prime}(c)=0 \quad$ E. $4<c<10$ and $f^{\prime}(c)=0$.
16. Suppose that the mass of a radioactive substance decays from 18 gms to 2 gms in 2 days. How long will it take for 12 gms of this substance to decay to 4 gms ? A. $\frac{\ln 3}{\ln 2}$ days \quad B. 1 day \quad C. $\frac{\ln 2}{\ln 3}$ days D. 2 days E. $(\ln 3)^{2}$ days
17. Which of the following is/are true about the function $g(x)=4 x^{3}-3 x^{4}$? (1) g is decreasing for $x>1$. (2) g has a relative extreme value at $(0,0)$. (3) the graph of g is concave up for all $x<0$. A. (1), (2) and (3) B. only (2) C. only (1) D. (1) and (2) E. (1) and (3).
18. Find where the function $f(x)=2 / \sqrt{1+x^{2}}$ is increasing
A. all x B. no x
C. $x<0$
D. $x>0$ $x=0$.
19. Let f be a function whose derivative, f^{\prime}, is given by $f^{\prime}(x)=(x-1)^{2}(x+2)(x-5)$. The function has A. a relative maximum at $x=-2$ and a relative minimum at $x=5$. B. a relative maximum at $x=5$ and a relative minimum at $x=-2$. C. relative maxima at $x=1, x=-2$ and a relative minimum at $x=5$. D. a relative maximum at $x=5$ and relative minima at $x=1, x=-2 \quad$ E. a relative maximum at $x=1$ and relative minima at $x=-2, x=5$.
20. Find $\frac{d}{d x} \int_{1}^{2 x} \sqrt{t^{2}+1} d t$ at $x=\sqrt{2} . ~ \begin{array}{llllll}\text { A. } 6 & \text { B. } 3 & \text { C. } \sqrt{2} & \text { D. } \sqrt{4 x^{2}+1} & \text { E. } \frac{1}{2 \sqrt{3}}\end{array}$
21. $\int_{3}^{4} x \sqrt{25-x^{2}} d x=$
A. 0
B. -37 C. $\frac{37}{3}$
D. $-\frac{74}{3}$
E. $\frac{7}{12}$
22. $\lim _{x \rightarrow \infty} \frac{x^{2}+2 x}{3 x^{2}+4}=$
$\begin{array}{lll}\text { A. } 1 & \text { B. } 3 / 7 & \text { C. } 1 / 4\end{array}$
D. 0
E. $1 / 3$.
23. $\lim _{x \rightarrow 0} \frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}=$
A. $1 / 2$
B. 2
C. $1 / 3$
D. 1 E. 0 .
24. Suppose that a function f has the following properties:
$f^{\prime \prime}(x)>0$ for $x<c, \quad f^{\prime}(c)=0$, and $f^{\prime}(x)<0$ for $x>c$.
Which of the following could be the graph of f ?
A.
B.
C.
D.
E.

25. Let R be the region between the graph of $y=\frac{1}{x}$ and the x-axis, from $x=a$ to $x=b \quad(0<a<b)$. If the vertical line $x=c$ cuts R into two parts of equal area, then $c=$
A. $\sqrt{a b}$
B. $\frac{a+b}{2}$
C. $\frac{\ln a+\ln b}{2}$
D. $\ln \left(\frac{a+b}{2}\right) \quad$ E. $\ln \left(\frac{b-a}{2}\right)$
26. Find the area of the region between the graph of $y=\frac{1}{1+x^{2}}$ and the $x-$ axis, from $x=-\sqrt{3}$ to $x=1$.
A. $\frac{\pi}{2}$
B. $\frac{3 \pi}{4}$
C. $\frac{15 \pi}{12}$
$\begin{array}{ll}\text { D. } \frac{\pi}{3} & \text { E. } \frac{7 \pi}{12}\end{array}$
27. $\frac{d}{d x}\left(e^{2 x} \ln \sqrt{1+x}\right)=$
A. $e^{2 x} \ln (1+x)+\frac{e^{2 x}}{2(1+x)}$
B. $\frac{e^{2 x}}{\sqrt{1+x}}+2 e^{2 x} \ln \sqrt{1+x}$
C. $\frac{1}{2} e^{2 x} \ln (1+x)+\frac{e^{2 x}}{2(1+x)}$
D. $\frac{2 e^{2 x}}{\sqrt{1+x}} \quad$ E. $\frac{e^{2 x}}{1+x}$
28. $\frac{d}{d x} x^{\sin x}=\quad$ A. $(\cos x) x^{\sin x}$
B. $(\sin x) x^{\sin x-1}$
C. $x^{\cos x}$
D. $x^{\sin x}\left[\frac{\sin x}{x}+(\cos x) \ln x\right]$
E. $(\ln x) x^{\sin x}$
29. $\frac{d}{d x} \tan ^{-1} e^{3 x}=$
A. $\frac{1}{1+e^{3 x}}$
B. $\frac{e^{3 x}}{1+e^{3 x}}$
C. $\frac{3 e^{3 x}}{1+e^{6 x}}$
D. $\frac{3 e^{3 x}}{1+e^{9 x^{2}}}$
E. $\frac{3 e^{3 x}}{\sqrt{1-e^{6 x}}}$
30. $\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x=$
A. $\frac{\pi}{2}$
B. $\frac{\pi}{6}$
C. $\sin ^{-1} \sqrt{3}$
D. $\frac{\pi}{3} \quad$ E. 1
31. $\int_{0}^{4} \frac{x}{\sqrt{1+2 x}} d x=$
A. $\frac{7}{2}$
B. $\frac{10}{3}$
C. $\frac{11}{4} \tan ^{-1} 3$
D. 3 E. 4
32. $\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x=$
A. $\ln \frac{1+e}{2}$
B. $\ln (1+e)$
C. $\frac{1}{2}$
D. $1-\ln 2$
E. e
33. If $f(x)=x^{2}-1,0 \leq x \leq 2$, then the graph of $y=f^{-1}(x)$ is

Answers: 1.D, 2.A, 3.D, 4.A, 5.C, 6.D, 7.B, 8.E, 9.A, 10.E, 11.C, 12.E, 13.E, 14.E, 15.A, 16.B, 17.C, 18.C, 19.A, 20.A, 21.C, 22.E, 23.C, 24.B, 25.A, 26.E, 27.A, 28.D, 29.C, 30.D, 31.B, 32.A, 33.B

