Student's Name: _____

Student's ID Number: _____

Instructions:

- 1. Do NOT turn the page until told to do so.
- 2. Fill in your name and student ID in the space provided above.
- 3. On the scantron, fill in your name, section number, student ID. For the test/quiz number, put down 01 for green exam and 02 for orange exam. Sign your name.
- 4. There are 12 problems and a total of 7 pages. The maximum possible score for this exam is 100, and each problem is worth the same points.
- 5. You can use the available space below a question or at the back of each page for your work. Turn in ONLY the scantron when you leave. Note: you will be graded ONLY based on your scantron answer sheet.
- 6. Only a one-line display scientific calculator is allowed. NO other electronic devices are allowed. No books or notes are allowed.
- 7. You will have 60 minutes to complete the exam.

8. Keep your eyes on your own exam please. Try to cover your scantron answers.

9. Good luck!

Time	Instructor	Section	Time	Instructor	Section
		No.			No.
7:30am	D. Daniels	0031	7:30am	E. Garcia	0021
7:30am	J. Bates	0110	7:30am	L. Bloome	0107
7:30am	N. Eikmeier	0119	8:30am	N. Eikmeier	0120
8:30am	L. Bloome	0108	8:30am	J. Bates	0109
8:30am	D. Daniels	0051	8:30am	E. Garcia	0061
9:30am	B. Cox	0100	9:30am	S. Rabieniaharatbar	0103
9:30am	I. Aly	0122	10:30am	I. Aly	0121
10:30am	S. Rabieniaharatbar	0104	10:30am	B. Cox	0099
10:30am	D. Nichols	0112	11:30am	D. Stratman	0098
11:30am	Y. Luo	0094	11:30am	D. Nichols	0111
11:30am	C. Mathison	0106	12:30pm	C. Mathison	0105
12:30pm	Y. Luo	0092	12:30pm	D. Stratman	0097
12:30pm	N. Stull	0011	1:30pm	M. Lynn	0041
1:30pm	H. Delgado	0052	1:30pm	M. Perlmutter	0093
1:30pm	N. Stull	0071	1:30pm	A. Yim	0115
2:30pm	M. Lynn	0081	2:30pm	M. Perlmutter	0091
2:30pm	A. Yim	0116	3:30pm	Y. Chen	0117
3:30pm	A. Schneider	0096	3:30pm	P. Stefanov	0101
3:30pm	M. Ochoa	0113	4:30pm	M. Ochoa	0114
4:30pm	T. Terrell	0102	4:30pm	A. Schneider	0095
4:30pm	Y. Chen	0118			

1. Given
$$f(x) = \frac{x^2}{\sin x}$$
. Find $f'(x)$.
A. $f'(x) = \frac{x^2 \cos x - 2x \sin x}{\sin^2 x}$
B. $f'(x) = \frac{2x \sin x + x^2 \cos x}{\sin^2 x}$
C. $f'(x) = \frac{2x \sin x - x^2 \cos x}{\sin^2 x}$
D. $f'(x) = \frac{2x \sin x - x^2 \cos x}{x^4}$
E. $f'(x) = \frac{2x}{\cos x}$

2. Find the slope of the tangent line to the graph of $y = x \cot x$ at $x = \frac{\pi}{4}$.

A. -1B. $\frac{1}{2}$ C. 3 D. $1 - \frac{\pi}{2}$ E. $1 + \frac{\pi}{8}$

3. Given
$$f(x) = \frac{x^3}{3} + x + \sqrt{x^3}$$
. Find $f''(4)$.
A. $\frac{67}{8}$
B. $\frac{49}{6}$
C. $\frac{19}{2}$
D. $\frac{26}{3}$
E. $\frac{35}{4}$

- 4. A bowling ball is launched off the top of a 240-foot tall building. The height of the bowling ball above the ground t seconds after being launched is $s(t) = -16t^2 + 32t + 240$ feet above the ground. What is the velocity of the ball as it hits the ground?
 - A. 0 ft/s
 - B. 5 ft/s
 - C. 32 ft/s
 - D. -76 ft/s
 - E. $-128~{\rm ft/s}$

5. If
$$y = \left(\frac{2x-1}{2x+1}\right)^3$$
, then $\frac{dy}{dx} =$
A. $\frac{48}{(2x+1)^4}$
B. $3\left(\frac{2x-1}{2x+1}\right)^2$
C. $\frac{6(2x-1)^2}{(2x+1)^3}$
D. $\frac{12(2x-1)^2}{(2x+1)^4}$
E. $\frac{24x-12}{(2x+1)^3}$

6. Given $f(x) = e^{5x} \ln(7x + e)$. Find f'(0).

A.
$$1 + \frac{1}{e}$$

B. $5 + \frac{7}{e}$
C. $\frac{1}{e}$
D. $\frac{5}{e}$
E. $\frac{35}{e}$

7. The price of one kilowatt-hour of electricity is given by

$$p(t) = (t^2 + 2t)^2,$$

where p(t) is the price in dollars and t is years after 2014 (so 2015 corresponds to t = 1.) At what rate is the price changing in the year of 2024?

- A. \$4800/year
- B. \$2400/year
- C. \$5280/year
- D. 1680/year
- E. 900/year

8. Find $\phi'(x)$ if $\phi(x) = \tan^2(3x^2 + 2)$.

- A. $2\tan(6x)$
- B. $2 \sec^2(6x)$
- C. $12x \sec^2(3x^2 + 2)$
- D. $12x \tan(3x^2 + 2)$
- E. $12x \tan(3x^2 + 2) \sec^2(3x^2 + 2)$

9. Use implicit differentiation to find $\frac{\mathrm{d}y}{\mathrm{d}x}$ if $x^2 + y^2 = 2xy + 5$.

A. 0 B. 1 C. $\frac{x}{1-y}$ D. $\frac{x}{x-y}$ E. $\frac{2y-2x+5}{2y-2x}$

- 10. All edges of a cube are expanding at a rate of 2 centimeters per second. How fast is the surface area changing when each edge is 3 centimeters?
 - A. $12 \text{ cm}^2/\text{sec}$
 - B. $46 \text{ cm}^2/\text{sec}$
 - C. $72 \text{ cm}^2/\text{sec}$
 - D. $36 \text{ cm}^2/\text{sec}$
 - E. $54 \text{ cm}^2/\text{sec}$

MA 16010 - Exam 2/Form 01

11. Water flows into a right cylindrical can with a circular base at a rate 4 m³/min. The radius of the base is 3 m. How fast is the water level rising inside the can? The volume of a right cylinder with a circular base is $V = \pi r^2 h$, where r is the radius of the base and h is the height of the cylinder.

A.
$$\frac{4}{9\pi}$$
 m/min
B. $\frac{3}{16\pi}$ m/min
C. $\frac{2}{3\pi}$ m/min
D. $\frac{3}{8\pi}$ m/min
E. $\frac{4}{3\pi}$ m/min

- 12. A 10-ft ladder, whose base is sitting on level ground, is leaning at an angle against a vertical wall when its base starts to slide away from the vertical wall. When the base of the ladder is 6 ft away from the bottom of the vertical wall, the base is sliding away at a rate of 4 ft/sec. At what rate is the vertical distance from the top of the ladder to the ground changing at this moment?
 - A. -3 ft/secB. $-\frac{3}{4} \text{ ft/sec}$ C. $\frac{1}{4} \text{ ft/sec}$ D. 4 ft/secE. 8 ft/sec