
Fourier Series
Some Preliminary Ideas:

� Odd/Even Functions:

� Sine is odd, which means sin (�x) = � sinx
�Cosine is even, which means cos (�x) = cosx

� Special values of siine an cosine at n�

�When dealing with series, n is always a positive integer. Remember at every �, sine has a value
of zero, which means

sinn� = 0

� �Cosine, on the otherhand, alternates between 1 and �1. So at odd values of n, cosn� = �1 and
at even values of n, cosn� = 1; which means

cosn� = (�1)n

1 What is a Fourier series?

The Fourier series are useful for describing periodic phenomena. The advantage that the Fourier series has
over Taylor series is that the function itself does not need to be continuous. Take for example a square wave
de�ned by one period as

f(x) =

�
�2 �1 < x < 0
2 0 < x < 1

­1.0 ­0.5 0.5 1.0
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­1
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y

Could this easily be approximated using a polynomial, like we did using Taylor series? Probably not
very well. Since this a periodic function (only one period shown), it might be more useful to use periodic
functions such as sine and cosine. This is exactly what the Fourier series does. The Fourier series is de�ned
as

f(x) =
a0
2
+

1X
n=1

�
an cos

n�x

p
+ bn sin

n�x

p

�
for a function de�ned on the interval (�p; p)

where

a0 =
1

p

Z p

�p
f(x)dx

an =
1

p

Z p

�p
f(x) cos

n�x

p
dx

bn =
1

p

Z p

�p
f(x) sin

n�x

p
dx

Looks like fun, right? What we are going to consider are two special cases. The �rst is when f(x) is a
constant function, and the second is when f(x) is a linear function.

1



2 Case 1 f(x) is a constant.

Consider f(x) =
�
k a < x < b , where a and b are numbers in [�p; p]; a � b, and k is any real number:

NOTE: The reason I am using a and b for the bounds is that the function might be broken into individual
pieces within a piecewise de�ned function, and you would take the integrals individually. You will see this
in the examples.

2.1 Finding a0

Finding a0 : a0 =
1

p

Z b

a

f(x)dx

Substituting in f(x) = k you get

1

p

Z b

a

kdx =
1

p
(kx)

x=b
x=a =

k

p
(b� a)

2.2 Finding an

Finding an : an =
1

p

Z p

�p
f(x) cos

n�x

p
dx

For now I am going to ignore the bounds and concentrate on the integral itself:

1

p

Z
f(x) cos

n�x

p
dx

Plugging in f(x) = k we get

1

p

Z
k cos

n�x

p
dx Then we can do u-substitution:

u =
n�x

p
! du =

n�

p
dx

dx =
p

n�
du

Substituting in

1

p

Z
k cosu

� p
n�
du
�
=
1

p

�
kp

n�

�
(sinu) =

k

n�
sin

n�x

p

Now plug in the bounds:

k

n�
sin

n�x

p
jx=bx=z =

k

n�

�
sin

bn�

p
� sin an�

p

�
So all that you need to do now is plug in the values for a; b; k; and p:

2.3 Finding bn

Finding bn : bn =
1

p

Z p

�p
f(x) sin

n�x

p
dx

Similar to above, I am going to ignore the bounds for now and plug them back in at the end.

bn =
1

p

Z
f(x) sin

n�x

p
dx
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Again, plugging in f(x) = x you get

1

p

Z
k sin

n�x

p
dx

Then we can do u-substitution: u =
n�x

p
! du =

n�

p
dx

dx =
p

n�
du

Substituting in

1

p

Z
k sinu

� p
n�
du
�
=

k

n�

Z
sinudu =

k

n�
(� cosu) = k

n�

�
� cos bn�

p
�
�
� cos an�

p

��
=

k

n�

�
cos

an�

p
� cos bn�

p

�
Then �nish by substituting back in for a; b; k; and p:

2.4 Summary:

For any constant function de�ned by f(x) = k on and interval (a; b) � (�p; p) ; the coe¢ cients of the Fourier
series can be determined by

a0 =
k

p
(b� a)

an =
k

n�

�
sin

bn�

p
� sin an�

p

�
bn =

k

n�

�
cos

an�

p
� cos bn�

p

�

2.5 Examples Where f(x) is a constant

Now let�s look at some examples, starting with the one listed at the beginning.

Example 1 f(x) =
�
�2 �1 < x < 0
2 0 < x < 1

­1.0 ­0.5 0.5 1.0

­2

­1

1

2

x

y

First note that p = 1 (the entire length of the period is �1 to 1, and p is always half of that)

The function is also broken up onto 2 parts: from �1 to 0, f(x) = �2, and from 0 to 1, f(x) = 2. This
means that each section of this function will be its own separate integral. So for a0, we will have:

a0 =
1

1

Z 0

�1
� 2dx+ 1

1

Z 1

0

2dx
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But we can take advantage of the formulas given for this, we just need to do it for each interval then add
them together:

� a0 =
k

p
(b� a)

Interval 1: (�1; 0) Interval 2: (0; 1)
a = �1; b = 0; k = �2; p = 1 a = 0; b = 1; k = 2; p = 1

�2
1
(0� (�1)) = �2 2

1
(1� 0) = 2

So to �nd a0 add the two values together:
a0 = �2 + 2 = 0

It is similar for �nding an and bn. Calculate each separately then add them together.

� an =
k

n�

�
sin

bn�

p
� sin an�

p

�

Interval 1: (�1; 0) Interval 2: (0; 1)
a = �1; b = 0; k = �2; p = 1 a = 0; b = 1; k = 2; p = 1

�2
n�

�
sin

0n�

1
� sin �1n�

1

�
2

n�

�
sin

1n�

1
� sin 0n�

1

�
=
�2
n�

(sin 0� sin (�n�)) =
2

n�
(sinn� � sin 0)

=
�2
n�

(� sin (�n�)) =
2

n�
sinn�

So that means

an =
2

n�
sin (�n�) + 2

n�
sin(n�)

However...note that since n is always in integer, there will always be a whole value of � inside each value
of sine, and since sin� = 0; then any sin (n�) = 0; therefore

an =
2

n�
(0) +

2

n�
(0) = 0

� bn =
k

n�

�
cos

an�

p
� cos bn�

p

�

Interval 1: (�1; 0) Interval 2: (0; 1)
a = �1; b = 0; k = �2; p = 1 a = 0; b = 1; k = 2; p = 1

�2
n�

�
cos
�1n�
1
� cos 0n�

1

�
2

n�

�
cos

0n�

1
� cos 1n�

1

�
=
�2
n�

(cos (�n�)� cos (0)) =
2

n�
(cos (0)� cosn�)

=
�2
n�

(cos (�n�)� 1) =
2

n�
(1� cosn�)

Which means that

bn =
�2
n�

(cos (�n�)� 1) + 2

n�
(1� cosn�)
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Now let�s do some algebra.

(1) Remember that cosine is even, so cos(��) = cos �, so the negative in the �rst expression disappears.

bn =
�2
n�

(cosn� � 1) + 2

n�
(1� cosn�)

(2) Distribute the negative in the �rst expression to reverse the insides:

bn =
2

n�
(1� cosn�) + 2

n�
(1� cosn�)

(3) Factor out
2

n�

bn =
2

n�
(1� cosn� + 1� cosn�) = 2

n�
(2� 2 cosn�)

(4) Factor out a 2

bn =
4

n�
(1� cosn�)

(5) Tricky part: Remember that cosine alternates between 1 and �1 at every other �, so cosn� = (�1)2

bn =
4

n�
(1� (�1)n)

Which gives:

a0 = 0 an = 0 bn =
2

n�
(1� (�1)n)

FINAL STEP: Plug coe¢ cients into the Fourier series:

f(x) =
a0
2
+

1X
n=1

�
an cos

n�x

p
+ bn sin

n�x

p

�

f(x) =
0

2
+

1X
n=1

�
(0) cos

n�x

1
+

�
4

n�
(1� (01)n)

�
sin

n�x

1

�

=
1X
n=1

��
4

n�
(1� (�1)n)

�
sinn�x

�

­1.0 ­0.5 0.5 1.0

­2

­1

1

2

x

y
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Example 2 f(x) =
�
0 �2 < x < 0
5 0 < x < 2

­2 ­1 0 1 2

2
4

x

y

So this means that p = 2: Again, this is broken into 2 intervals:

(�2; 0) ; k = 0 (0; 2) ; k = 5

But since k = 0 on the interval (�2; 0) ; all of the integrals on that interval will be zero.
(Since all terms are multiplied by k, zero times anything is zero)

So we only need to pay attention to the interval (0; 2) ; where a = 0; b = 2; k = 5; p = 2

� Finding a0 =
k

p
(b� a)

a0 =
5

2
(2� 0) = 5

� Finding an =
k

n�

�
sin

bn�

p
� sin an�

p

�

an =
5

n�

�
sin

2n�

2
� sin 0n�

2

�
=

5

n�
(sin 2n� � 0)

But remember, sinn� = 0

so an = 0

� Find bn =
k

n�

�
cos

an�

p
� cos bn�

p

�

bn =
5

n�

�
cos 0� cos 2n�

2

�
=

5

n�
(1� cosn�)

But remember, cosn� = (�1)n

so bn =
5

n�
(1� (�1)n)

So plugging into the Fourier series f(x) =
a0
2
+

1X
n=1

�
an cos

n�x

p
+ bn sin

n�x

p

�
you get

f(x) =
5

2
+

1X
n=1

�
(0) cos

n�x

2
+

�
5

n�
(1� (�1)n)

�
sin

n�x

2

�

f(x) =
5

2
+

1X
n=1

�
5

n�
(1� (�1)n)

�
sin

n�x

2

­2 ­1 0 1 2

2

4

x

y
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Example 3 f(x) =

8>><>>:
0 �3 < x < �2
�5 �2 < x < 0
0 0 < x < 2
4 2 < x < 3

­3 ­2 ­1 1 2 3

­4

­2

2

4

x

y

Now the period has been broken into 4 intervals and p = 3 (half the length of the period):

Interval 1 Interval 2 Interval 3 Interval 4
(�3;�2) ; k = 0 (�2; 0) ; k = �5 (0; 2) ; k = 0 (2; 3) ; k = 4

We can ignore intervals 1 and 3, since k = 0 (so all of the integrals will be zero).

� a0 =
k

p
(b� a)

Interval 2: Interval 4:
a = �2; b = 0; k = �5; p = 3 a = 2; b = 3; k = 4; p = 3

�5
3
(0� (�2)) = �10

3

4

3
(3� 2) = 4

3

So a0 = �
10

3
+
4

3
= �2

� an =
k

n�

�
sin

bn�

p
� sin an�

p

�
Interval 2: Interval 4:
a = �2; b = 0; k = �5; p = 3 a = 2; b = 3; k = 4; p = 3

�5
n�

�
sin

0n�

3
� sin �2n�

3

�
4

n�

�
sin

3n�

3
� sin 2n�

3

�
�5
n�

�
sin 0� sin �2n�

3

�
4

n�

�
sinn� � sin 2n�

3

�
�5
n�

�
0�

�
� sin 2n�

3

��
4

n�

�
� sin 2n�

3

�
�5
n�

sin
2n�

3

�4
n�

sin
2n�

3

*Note in the last step, for interval 2, since sine is an odd function, sin (��) = � sin �,
so sin

�2n�
3

= � sin 2n�
3
, and for interval 4, remember that sinn� = 0

an =
�5
n�

sin
2n�

3
+
�4
n�

sin
2n�

3

an = �
9

n�
sin

2n�

3
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� bn =
k

n�

�
cos

an�

p
� cos bn�

p

�
Interval 2: Interval 4:
a = �2; b = 0; k = �5; p = 3 a = 2; b = 3; k = 4; p = 3

�5
n�

�
cos
�2n�
3
� cos 0n�

3

�
4

n�

�
cos

2n�

3
� cos 3n�

3

�
�5
n�

�
cos

2n�

3
� 1
�

4

n�

�
cos

2n�

3
� (�1)n

�
*Note for the last step, in interval 2, cosine is even, so cos (��) = cos �, and for interval 4, cosn� = (�1)n :

bn =
�5
n�

�
cos

2n�

3
� 1
�
+
4

n�

�
cos

2n�

3
� (�1)n

�
(1) Factor out

1

n�

=
1

n�

�
�5
�
cos

2n�

3
� 1
�
+ 4

�
cos

2n�

3
� (�1)n

��
(2) Distribute coe¢ cients

=
1

n�

�
�5 cos 2n�

3
+ 5 + 4 cos

2n�

3
� 4 (�1)n

�
(3) Combine like terms:

bn =
1

n�

�
� cos 2n�

3
+ 5� 4 (�1)n

�

So...

a0 =
�2
3

an = �
9

n�
sin

2n�

3
bn =

1

n�

�
� cos 2n�

3
+ 5� 4 (�1)n

�

So plugging into the Fourier series f(x) =
a0
2
+

1X
n=1

�
an cos

n�x

p
+ bn sin

n�x

p

�
you get

f(x) =
�2=3
2

+
1X
n=1

��
� 9

n�
sin

2n�

3

�
cos

n�x

3
+
1

n�

�
� cos 2n�

3
+ 5� 4 (�1)n

�
sin

n�x

3

�

­3 ­2 ­1 1 2 3

­4

­2

2

4

x

y

8



3 Case 2: f(x) is linear f(x) = k +mx

Now we will consider the case were f(x) is linear. In the general case, we will say f(x) = k+mx on (�p; p) :
Again, we will consider a generic example to derive "easier" to use formulas. And again, since the function

may be broken up within the period, we will derive the formulas using the interval (a; b) :

3.1 Calculating a0

So ao =
1

p

Z b

a

f(x)dx. Since we are using f(x) = k +mx, we get

a0 =
1

p

Z b

a

(k +mx) dx =
1

p

�
kx+

m

2
x2
�x=b
x=a

a0 =
1

p

�
k(b� a) + m

2

�
b2 � a2

��

3.2 Calculating an

As before, I am going to ignore the bounds for now, as well as the
1

p
, which I will put in at the end.

an =
1

p

Z b

a

f(x) cos
n�x

p
dx

Substituting in f(x) = k +mx we get (as well as ignoring the bounds and 1=p)Z
(k +mx) cos

n�x

p
dx

Note the mixture of an algebraic with a trigonometric function. This means integration by parts:

u = k +mx dv = cos
n�x

p
&

du = mdx  � v =
p

n�
sin

n�x

p

**u-sub for integrating dv

= (k +mx)

�
p

n�
sin

n�x

p

�
�
Z
(m)

�
p

n�
sin

n�x

p

�
dx

=
p(k +mx)

n�
sin

n�x

p
� mp
n�

Z
sin

n�x

p
dx [to do this integration, use u-sub as we have done before]

=
p(k +mx)

n�
sin

n�x

p
� mp
n�

� p
n�

��
� cos n�x

p

�
=
p(k +mx)

n�
sin

n�x

p
+
mp2

n2�2
cos

n�x

p

Now let�s multiply by the
1

p
we took o¤ at the beginning and distribute.

1

p

�
p(k +mx)

n�
sin

n�x

p
+
mp2

n2�2
cos

n�x

p

�
=
k +mx

n�
sin

n�x

p
+
mp

n2�2
cos

n�x

p

And now evaluate from a to b:

an =
k +mb

n�
sin

bn�

p
� k +ma

n�
sin

an�

p
+
mp

n2�2

�
cos

bn�

p
� cos an�

p

�
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3.3 Calculating bn

bn =
1

p

Z b

a

f(x) sin
n�x

p
dx

I am going to follow the same procedure as above withZ
(k +mx) sin

n�x

p
dx solve by integration by parts:

u = k +mx dv = sin
n�x

p
&

du = mdx  � v = � p

n�
cos

n�x

p

= (k +mx)

�
� p

n�
cos

n�x

p

�
�
Z
(m)

�
� p

n�
cos

�nx

p

�
dx

= �p (k +mx)
n�

cos
n�x

p
+
mp

n�

Z
cos

n�x

p
dx

= �p (k +mx)
n�

cos
n�x

p
+
mp

n�

� p
n�

�
sin

n�x

p

= �p (k +mx)
n�

cos
n�x

p
+
mp2

n2�2
sin

n�x

p

Multiply through by 1=p

1

p

�
�p (k +mx)

n�
cos

n�x

p
+
mp2

n2�2
sin

n�x

p

�
= �k +mx

n�
cos

n�x

p
+
mp

n2�2
sin

n�x

p

And lastly evaluate from a to b:

�k +mx
n�

�
cos

bn�

p
� cos an�

p

�
+
mp

n2�2

�
sin

bn�

p
� sin an�

p

�
=
k +ma

n�
cos

an�

p
� k +mb

n�
cos

bn�

p
+
mp

n2�2

�
sin

bn�

p
� sin an�

p

�

3.4 Summary

If f(x) is linear in the form f(x) = k +mx, the coe¢ cients of the Fourier series can be calculated as

a0 =
1

p

�
k(b� a) + m

2

�
b2 � a2

��
an =

k +mb

n�
sin

bn�

p
� k +ma

n�
sin

an�

p
+
mp

n2�2

�
cos

bn�

p
� cos an�

p

�
bn =

k +ma

n�
cos

an�

p
� k +mb

n�
cos

bn�

p
+
mp

n2�2

�
sin

bn�

p
� sin an�

p

�

(OK, not as easy as the previous kind of problems...)
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3.5 Examples

Example 4 f(x) =
�

0 �3 < x < 0
2x 0 < x < 3

­3 ­2 ­1 0 1 2 3

2
4
6

x

y

Not that on the �rst interval (�3; 0) that f(x) = 0, so we only need to concentrate on the second.

So in the interval (0; 3) ; p = 3; k = 0;m = 2; a = 0; b = 3

� Finding a0 :

a0 =
1

p

�
k(b� a) + m

2

�
b2 � a2

��
a0 =

1

3

�
0(3� 0 + 2

2

�
32 � 02

��
=
1

3
(0 + 1 (9)) = 3

� Finding an :

an =
k +mb

n�
sin

bn�

p
� k +ma

n�
sin

an�

p
+
mp

n2�2

�
cos

bn�

p
� cos an�

p

�
=
0 + 2(3)

3
sin

3n�

3
� 0 + 2(0)

3
sin 0 +

(2)(3)

n2�2

�
cos

3n�

3
� cos 0

�
= 2 sinn� � 0 + 6

n2�2
(cosn� � 1)

= 0 +
6

n2�2
((�1)n � 1)

=
6

n2�2
((�1)n � 1)

� Finding bn :

bn =
k +ma

n�
cos

an�

p
� k +mb

n�
cos

bn�

p
+
mp

n2�2

�
sin

bn�

p
� sin an�

p

�
=
0 + 2(0)

n�
cos 0� 0 + 2(3)

n�
cos

3n�

3
+
2(3)

n2�2

�
sin

3n�

3
� sin 0

�
= 0� 6

n�
cosn� +

6

n2�2
(sinn�)

= � 6

n�
(�1)n + 0

= � 6

n�
(�1)n

So...a0 = 3 an =
6

n2�2
((�1)n � 1) bn =

�6
n�

(�1)n
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Plugging the coe¢ cients in the Fourier series f(x) =
a0
2
+

1X
n=1

�
an cos

n�x

p
+ bn sin

n�x

p

�
you get

f(x) =
3

2
+

1X
n=1

��
6

n2�2
((�1)n � 1)

�
cos

n�x

3
+

�
�6
n�

(�1)n
�
sin

n�x

3

�

­3 ­2 ­1 0 1 2 3

2

4

6

x

y

Example 5 f(x) =
�
x+ 2 �2 < x < 0
2� x 0 < x < 2

­2 ­1 0 1 2

1

2

x

y

Now we have two intervals to worry about:

Interval 1 (�2; 0) : p = 2; k = 2;m = 1; a = �2; b = 0
Interval 2: (0; 2) : p = 2; k = 2;m = �1; a = 0; b = 2

� Finding a0 :
1

p

�
k(b� a) + m

2

�
b2 � a2

��

Interval 1:
1

2
(2(0� (�2)) + 1

2

�
02 � (�2)2

�
=
1

2
(4� 2) = 1

Interval 2:
1

2

�
2 (2� 0) + �1

2

�
22 � 02

��
=
1

2
(4� 2) = 1

So a0 = 1 + 1 = 2

� Finding an :
k +mb

n�
sin

bn�

p
� k +ma

n�
sin

an�

p
+
mp

n2�2

�
cos

bn�

p
� cos an�

p

�

Interval 1:
2 + 1(0)

n�
sin 0� 2 + 1(�2)

n�
sin

2n�

2
+
1(2)

n2�2

�
cos 0� cos �2n�

2

�
= 0� 0 + 2

n2�2
(1� cosn�))

=
2

n2�2
(1� (�1)n)

Interval 2:
2� 1(2)
n�

sin
2n�

2
� 2� 1 (0)

n�
sin 0 +

�1(2)
n2�2

�
cos

2n�

2
� cos 0

�

12



= 0� 0� 2

n2�2
(cosn� � 1)

= � 2

n2�2
((�1)n � 1)

=
2

n2�2
(1� (�1)n)

Adding them together gives

an =
2

n2�2
(1� (�1)n) + 2

n2�2
(1� (�1)n)

an =
4

n2�2
(1� (�1)n)

� Finding bn :
k +ma

n�
cos

an�

p
� k +mb

n�
cos

bn�

p
+
mp

n2�2

�
sin

bn�

p
� sin an�

p

�

Interval 1:
2 + 1(�2)

n�
cos
�2n�
2
� 2 + 1(0)

n�
cos 0 +

1(2)

n2�2

�
sin 0� sin �2n�

2

�
= 0� 2

n�
� 2

n2�2
(0� 0)

= � 2

n�

Interval 2:
2� 1(0)
n�

cos 0� 2� 1(2)
n�

cos
2n�

2
+
�1(2)
n2�2

�
sin

2n�

2
� sin 0

�
=

2

n�
� 0� 0

=
2

n�

So bn = �
2

n�
+
2

n�
= 0

Then we have a0 = 2 an =
4

n2�2
(1� (�1)n) bn = 0

plugging the coe¢ cients in the Fourier series f(x) =
a0
2
+

1X
n=1

�
an cos

n�x

p
+ bn sin

n�x

p

�
you get

f(x) =
2

2
+

1X
n=1

��
4

n2�2
(1� (�1)n)

�
cos

n�x

2
+ (0) sin

n�x

2

�
f(x) = 1 +

1X
n=1

�
4

n2�2
(1� (�1)n)

�
cos

n�x

2

­2 ­1 0 1 2

1

2

x

y
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Example 6 f(x) =
�
2 �� < x < 0
x 0 < x < �

­3 ­2 ­1 0 1 2 3

2

x

y

Note this one that it is a mixture of both constant and linear functions. Therefore, on the lower interval,
we can use the formulas for a constant function, and for the linear, the second set of formulas:

Interval 1: (��; 0) : p = �; k = 2; a = ��; b = 0
Interval 2: (0; �) : p = �; k = 0;m = 1; a = 0; b = �

� Finding a0 :

Interval 1:
k

p
(b� a)

2

�
(0� (��)) = 2�

�
= 2

Interval 2:
1

p

�
k(b� a) + m

2

�
b2 � a2

��
1

�

�
0 +

1

2

�
�2 � 02

��
=
1

�

�
��

2

2

�
= ��

2

So a0 = 2�
�

2

� Finding an :

Interval 1:
k

n�

�
sin

bn�

p
� sin an�

p

�
2

n�

�
sin 0� sin ��n�

�

�
=

1

n�
(0� sin (�n�)) = 0

Interval 2:
k +mb

n�
sin

bn�

p
� k +ma

n�
sin

an�

p
+
mp

n2�2

�
cos

bn�

p
� cos an�

p

�
=
0 + 1 (�)

�
sin

�n�

�
� 0 + 1(0)

�
sin 0 +

1(�)

n2�2

�
cos

�n�

�
� cos 0

�
= sinn� � 0 + 1

n2�
(cosn� � 1)

=
1

n2�
((�1)n � 1)

So an = 0 +
1

n2�
((�1)n � 1) = 1

n2�
((�1)n � 1)
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� Finding bn :

Interval 1:
k

n�

�
cos

an�

p
� cos bn�

p

�
=

2

n�

�
cos
��n�
�
� cos 0

�
=

2

n�
(cos (�n�)� 1)

=
2

n�
((�1)n � 1)

Interval 2:
k +ma

n�
cos

an�

p
� k +mb

n�
cos

bn�

p
+
mp

n2�2

�
sin

bn�

p
� sin an�

p

�
=
0 + 1(0)

n�
cos 0� 0 + 1(�)

n�
cos

�n�

�
+
1(�)

n2�2

�
sin

�n�

�
� sin 0

�
= 0� 1

n
cosn� + 0

= � 1
n
(�1)n

So bn =
2

n�
((�1)n � 1)� 1

n
(�1)n

Which gives: a0 = 2 +
�

2
an =

1

n2�
((�1)n � 1) bn =

2

n�
((�1)n � 1)� 1

n
(�1)n

plugging the coe¢ cients in the Fourier series f(x) =
a0
2
+

1X
n=1

�
an cos

n�x

p
+ bn sin

n�x

p

�
you get

f(x) =
2� �

2
2

+

1X
n=1

��
1

n2�
((�1)n � 1)

�
cos

n�x

�
+

�
2

n�
((�1)n � 1)� 1

n
(�1)n

�
sin

n�x

�

�
f(x) =

4 + �

4
+

1X
n=1

��
1

n2�
((�1)n � 1)

�
cosnx+

�
2

n�
((�1)n � 1)� 1

n
(�1)n

�
sinnx

�

­3 ­2 ­1 0 1 2 3

1

2

3

x

y

4 Convergence at Points of Discontinuity

One advantage that a Fourier series gives is that it uses a continuous function to describe a function that
might have discontinuities. Sometimes it might be useful to �nd the value to which the Fourier series
converges at points where there is a jump discontinuity within one period. This can easily be found by
taking the average value of the function at both sides of the point of discontinuity.

15



If a function has a discontinuity at x0, the value to which the Fourier series converges at that point is

F0 =
f(x�0 ) + f(x

+
0 )

2

where f(x�0 ) is the value of f(x) on the left side, and f(x
+
0 ) is the value of f(x) on the right side.

Let�s look at the previous examples:

Example 1 f(x) =

�
�2 �1 < x < 0
2 0 < x < 1

­1.0 ­0.5 0.5 1.0

­2

­1

1

2

x

y

This function is discontinuous at x0 = 0: On the left side, it has a value of f(x
�
0 ) = �2, and on the right

side f(x+0 ) = 2

F0 =
= 2 + 2

2
= 0

So the Fourier series converges to (x0; F0) = (0; 0)

Example 2 f(x) =

�
0 �2 < x < 0
5 0 < x < 2

­2 ­1 0 1 2

2

4

x

y

The point of discontinuity occurs at x0 = 0, with f(x
�
0 ) = 0 and f(x

+
0 ) = 5

F0 =
0 + 5

2
=
5

2

So at the point of discontinuity, the Fourier series converges to (x0; F0) =
�
0; 52

�

Example 3 f(x) =

8>><>>:
0 �3 < x < �2
�5 �2 < x < 0
0 0 < x < 2
4 2 < x < 3 ­3 ­2 ­1 1 2 3

­4

­2

2

4

x

y

This function has 3 points of discontinuity and x0 = �2; x0 = 0, and x0 = 2:

At x0 = �2 :
f(x�0 ) = 0 and f(x

+
0 ) = �5 ! F0 =

0 + (�5)
2

= �5
2

At x0 = 0 :

f(x�0 ) = �5 and f(x+0 ) = 0 ! F0 =
�5 + 0
2

= �5
2
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At x0 = 2 :

f(x�0 ) = 0 and f(x
+
0 ) = 4 ! F0 =

0 + 4

2
= 2

So the points of convergence (x0; F0) would be
�
�2;� 52

�
;
�
0;� 52

�
and (2; 2)

Example 4 f(x) =

�
0 �3 < x < 0
2x 0 < x < 3

­3 ­2 ­1 0 1 2 3

2
4
6

x

y

In this function, there are no jump discontinuities within the graph of one period. Therefore, there would
be no points of convergence for discontinuities.

Example 5 f(x) =

�
x+ 2 �2 < x < 0
2� x 0 < x < 2

­2 ­1 0 1 2

1

2

x

y

Like the previous example, this function has no jump discontinuities.

Example 6 f(x) =

�
2 �� < x < 0
x 0 < x < �

­3 ­2 ­1 0 1 2 3

1

2

3

x

y

The function is discontinuous at x0 = 0, with f(x
�
0 ) = 2 and f(x

+
0 ) = 0, so

F0 =
2 + 0

2
= 1

Giving (x0; F0) = (0; 1)
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