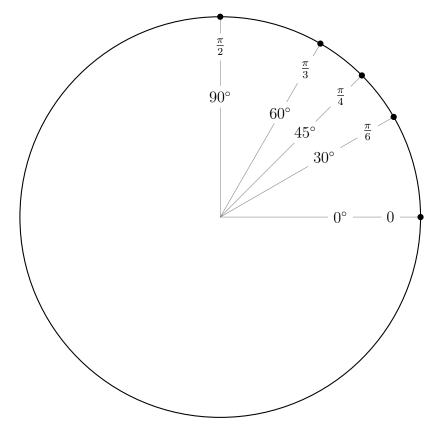
This document is intended to help you reproduce the unit circle on the fly without having to memorize loads and loads of trig values. Here is a summary of the steps we will perform:

- Step 1: Construct the unit circle for $\sin \theta$, where θ ranges between 0 and $\frac{\pi}{2}$ radians.
- Step 2: Complete the unit circle for $\sin \theta$ and values of θ between $\frac{\pi}{2}$ and π .
- Step 3: Fill out the unit circle for $\sin \theta$ by using a simple flip of steps 1 and 2.
- Step 4: Complete the unit circle for $\cos \theta$ by rotating your $\sin \theta$ circle by 90 degrees.

You can then use the unit circle for $\sin \theta$ and $\cos \theta$ to derive, for example, values of $\tan \theta = \frac{\sin \theta}{\cos \theta}$.

Before starting, recall that the x-coordinate on the unit circle corresponds to $\cos \theta$, and the y-coordinate represents $\sin \theta$. So, because we're first filling out the sine values, we're actually filling out all of the y-coordinates before we fill out the x-coordinates.

• Step 1: Start out by drawing a circle, and labelling the five angles in the first quadrant, in increasing order: these values (in order, measured in radians) are $\theta = 0$, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, and $\frac{\pi}{2}$. The equivalent values in degrees are $\theta = 0$, 30, 45, 60, 90.

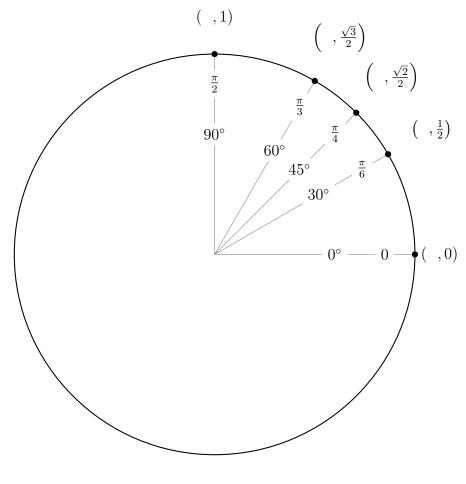


The values of $\sin \theta$ in the first quadrant have a nice symmetry about them if you write them in this form:

$$\frac{\theta \quad \mid \quad 0 \quad \mid \frac{\pi}{6} \mid \frac{\pi}{4} \mid \frac{\pi}{3} \mid \frac{\pi}{2}}{\sin \theta \mid \mid \frac{\sqrt{0}}{2} \mid \frac{\sqrt{1}}{2} \mid \frac{\sqrt{2}}{2} \mid \frac{\sqrt{3}}{2} \mid \frac{\sqrt{4}}{2}}$$

When written in this fashion, all of them have a 2 in the denominator, a square root in the numerator, and the numbers inside the roots just count up monotonically from 0 to 4. Of course, some of these simplify: $\sqrt{0} = 0$, $\sqrt{1} = 1$, $\sqrt{4} = 2$, so the sine values reduce to the following:

Let's include these in the circle as the second coordinate:



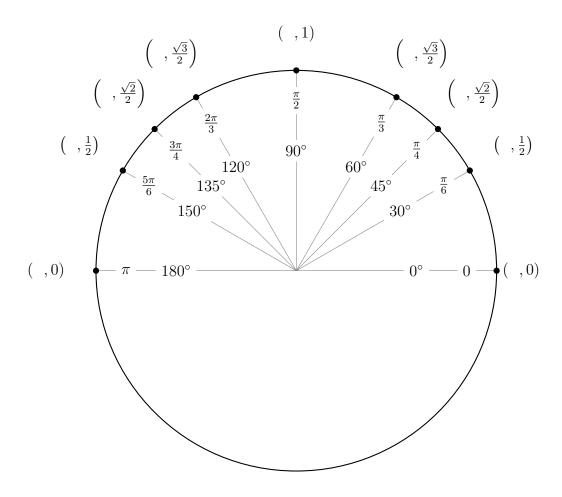
• Step 2: Now we include the values of $\sin \theta$ which are between $\frac{\pi}{2}$ and π radians. To get the angle measurements, add $\frac{\pi}{2}$ (or 90 degrees) to each of the angles in the first quadrant, i.e. the angles are

$$0 + \frac{\pi}{2} = \frac{\pi}{2}, \qquad \frac{\pi}{6} + \frac{\pi}{2} = \frac{4\pi}{6} = \frac{2\pi}{3}, \qquad \frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4}, \qquad \frac{\pi}{3} + \frac{\pi}{2} = \frac{5\pi}{6}, \qquad \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

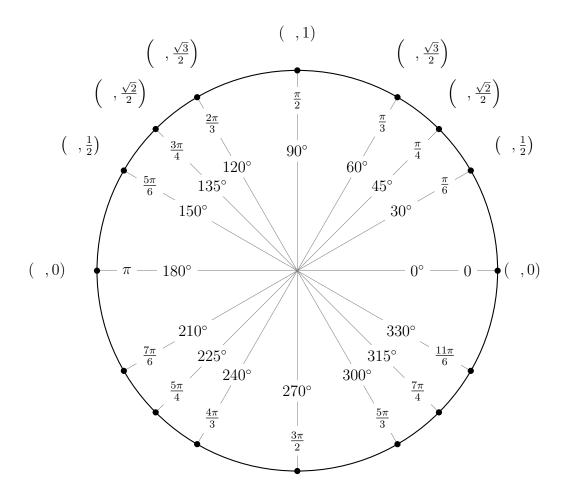


In order to fill in the rest of the sine values between $\frac{\pi}{2}$ and π , you just reverse the order of the values between 0 and $\frac{\pi}{2}$. That is, count downward from 1 to 0 (instead of upward from 0 to 1): this results in the following:

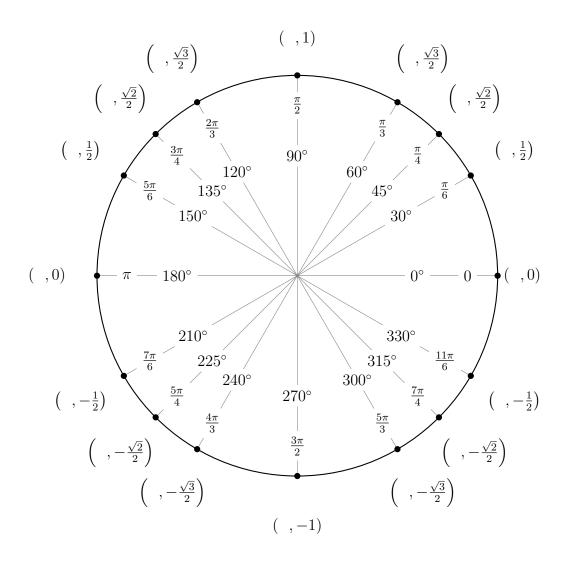
Placing these on the graph, again in the second coordinate, gives the following:



• Step 3: Let's finish up the sine coordinates for θ between π and 2π . To get the angles, just add π radians to each angle starting from zero (i.e. $0 + \pi$, $\frac{\pi}{6} + \pi = \frac{7\pi}{6}$, $\frac{\pi}{4} + \pi = \frac{5\pi}{4}$, etc.) while going around counterclockwise:



In order to get the y-coordinates on the bottom half of the unit circle, you can just take the y-coordinate of the point directly above the point and negate it. For example, at $\theta = \frac{5\pi}{3}$, the point directly above it corresponds to the angle $\frac{\pi}{3}$ which has y-coordinate $\frac{\sqrt{3}}{2}$. Thus the y-coordinate at $\theta = \frac{5\pi}{3}$ is equal to $-\frac{\sqrt{3}}{2}$. The bottom line is that this step amounts to flipping the circle upside down to get the lower half and negating each of the y-coordinates. Filling these in gives the following:



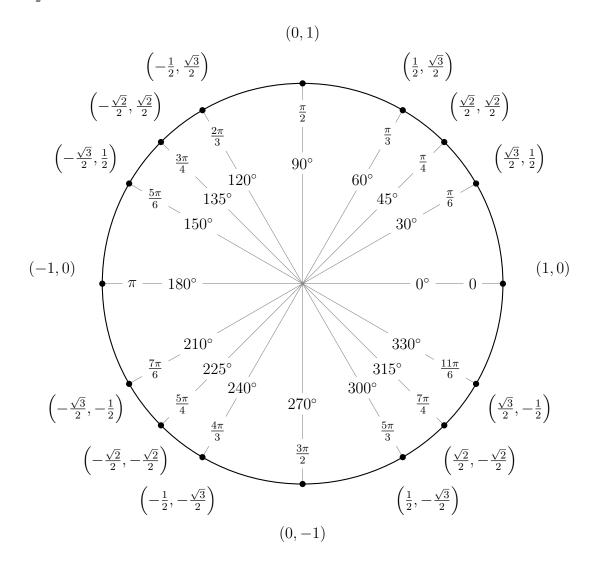
• Step 4: Finally, we're ready to complete the x-coordinates, which correspond to the values of $\cos \theta$. This part is now really easy, as all of the hard work has been done! The key is the following statement:

The cosine of an angle corresponds to the sine of that angle plus $\frac{\pi}{2}$.

So, for example, the cosine of $\frac{\pi}{2}$ is the exact same as the sine of $\frac{\pi}{2} + \frac{\pi}{2} = \pi$; hence $\cos \frac{\pi}{2} = \sin \pi = 0$. Similarly, the cosine of $\frac{5\pi}{4}$ is equal to the sine of $\frac{5\pi}{4} + \frac{\pi}{2} = \frac{7\pi}{4}$; therefore $\cos \frac{5\pi}{4} = \sin \frac{7\pi}{4} = -\frac{\sqrt{2}}{2}$. In terms of how to fill this in on the unit circle, start from an angle θ . Move 90 degrees counterclockwise, and write the sine value corresponding to that new angle into the value of cosine at

your starting θ . For example, if you start at $\theta = \frac{4\pi}{3}$, rotating counterclockwise by 90 degrees lands us at $\frac{11\pi}{6}$, for which the sine value is $-\frac{1}{2}$. Therefore, the cosine of our starting angle, $\frac{4\pi}{3}$, is equal to $-\frac{1}{2}$, too.

Below is the final, finished unit circle constructed in this way. Notice that if you start from $\theta = 0$ and read off the values of $\cos \theta$ (the x-coordinates), you get the exact same list as if you had started from $\theta = \frac{\pi}{2}$ and read off the values of $\sin \theta$ (the y-coordinates).



As a final suggestion, see if you can reproduce this on your own a couple of times (no peeking!). If you can, then you should be good to go for the exam!