Answers to MA 22000 Review Worksheet for Exam 1, Fall 2013

1)	a) b)	4 terms, degree 3, leading term is $-x^3$ 5 terms, degree 4, leading term is n^4			
2)	5 <i>x</i> +	$9xy + 6x^2y - 10xy^2$			
3)	a) c)	$\frac{4a^2 + 2a - 8}{\frac{13}{12}a + \frac{22}{15}}$	b)	$2n^3 + 12n^2 - 5n +$	5
4)	15 <i>r</i> -	+13			
5)	 a) b) c) d) e) f) 	It is not a function. It is not a function.	$D = \{ C \ D = [C \ $	$\begin{array}{c} -3, -1, 0, 1, 2, 3, 5\\ 0, 4 \end{bmatrix} R = [-2, 2]\\ -\infty, \infty) R = [0, \infty]\\ 5, \infty) R = [0, \infty)\\ -\infty, 2) \cup (2, \infty)\\ 0, \infty) R = (-\infty, \infty) \end{array}$	$R = \{-6, 0, 1, 2, 4, 5, 8, 10\}$
6)	a) c) e)	f(3) = 7 $h(3a-2) = \frac{6a+1}{9a-7}$ g(3) = 3	b) d) f)	$g(-1) = 1$ $f(-15) = 241$ $h\left(\frac{1}{3}\right) \text{ is not a real}$	l number
7)	a)	$F(3\pi) = -5\pi$	b)	$F(h\!-\!4\pi)\!=\!-2h$	$+9\pi$
8)	a)	g(-1) = 2	b)	x = -1	c) $g\left(\frac{1}{2}\right) = 5$
					The scale on each axis is 1 unit per hash mark. Graph for part (a) is the line with the positive slope (rising) and the graph for part (b) is the line with the negative slope (falling).

- 9)
- 10) 164.98 centimeters
- 11) $6y^6 12y^5 + 27y^4 21y^3 18y^2$

12)	$12a^2 - 11a - 36$				
13)	$90x^3 - 135x^2 + 50x$				
14)	$12n^3 + 5n^2 + 5n + 6$				
15)	$24x^3 - 32x^2 + 28x - 15$				
16)	a) $36x^2 - \frac{1}{4}$ b) $144x^2 - 120x + 25$				
17)	$8x^3 + 34x^2 + 5x - 12$				
18)	Area = $2x^2 + 24x - 26$				
19)	Volume = $2x^3 + 31x^2 + 110x - 63$				
20)	$x = \frac{48}{7}$				
21)	$x = -\frac{5}{2}$				
22)	x = 130				
23)	<i>x</i> = 7				
24)	$x = \frac{5}{2}$				
25)	t = -15				
26)	no solution				
27)	\$4000 was invested in the bond.				
28)	40 mL of the 6% solution was added.				
29)	The car had been following the truck for $\frac{13}{14}$ hours or approximately 55.7 minutes.				
30)	Distance is 2 miles.				
31)	Helen's time alone is 2/3 hour or 40 minutes.				
32)	<i>A</i> slope: $\frac{9}{8}$ <i>B</i> $\frac{7}{5}$				

33) vertical line: x = -5 horizontal line: y = 3

34) First line has a negative slope. Second has a zero slope. Third has an undefined slope. The fourth line has a positive slope.

35)

The graph above with the positive slope is graph (b). The graph with the negative slope is graph (a).

- $38) \qquad y = -\frac{5}{6}x + \frac{31}{6}$
- 39) Let x = total family members F(x) = 60x + 105, \$345
- 40) (a) (0, 9) and (5, 37) $m = \frac{28}{5}$ (b) $P = \frac{28}{5}y + 9$, where *P* is the percent of households with access to high-speed internet and *y* is the number of years since 2000 c) 65%