NAME:	MA 23100
	Sample Final Exam
PUID:	

INSTRUCTIONS

- There are 25 problems on 14 pages.
- Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded.
- No books or notes are allowed.
- You may use a one-line scientific calculator. No other electronic device is allowed. Be sure to turn off your cellphone.
- Show all your work on the exam. If you need more space, use the backs of the pages.

MA 23100 - Sample Final Exam

- 1. Find the slope of the line passing through the points (-3,7) and (4,-3)

 - A. $-\frac{10}{7}$ B. $-\frac{7}{10}$ C. $\frac{7}{10}$ D. $\frac{10}{7}$ E. $\frac{7}{4}$

2. Which of the following best describes the **domain** of the function

$$f(x) = \frac{x+4}{x^2 - 3x - 10}?$$

- A. All real numbers except x = -4.
- B. All real numbers except x = 2 and x = -5.
- C. All real numbers except x = -2 and x = 5.
- D. All real numbers except x = 2, x = -5 and x = -4.
- E. All real numbers except x = -2, x = 5 and x = -4.

3. Solve for x. Give your answer as a decimal number rounded to at least 3 decimal places. (Note that the angle is given in radians.)

- A. 7.224
- B. 16.649
- C. 31.148
- D. 33.423
- E. 34.571

4. What is the **period** of the function

$$p(x) = 14\cos(6t) - 9?$$

- A. $\frac{\pi}{7}$ B. $\frac{3}{\pi}$ C. $\frac{\pi}{3}$ D. $\frac{7}{\pi}$

- E. 6

5. The graph of a function f(x) is given below. Compute

$$\lim_{x \to -3} f(x),$$

if it exists.

- A. 0
- B. 1
- C. 2
- D. This limit does not exist because the one-sided limits are not equal.
- E. This limit does not exist because the function is not continuous at the point x=-3.
- 6. Compute

$$\lim_{x \to 5} \frac{2x - 10}{x^2 - 2x - 15},$$

if it exists.

- A. 0
- B. $\frac{1}{4}$
- C. 5
- D. $\frac{1}{8}$
- E. This limit does not exist.

MA 23100 - Sample Final Exam

7. Find the equation of the line tangent to the curve

$$y = x^2 + \sqrt{x}$$

- at the point x = 4.
 - A. $y = \frac{9}{2}x$
 - B. $y = \frac{17}{4}x + 1$ C. $y = \frac{33}{4}x 15$

 - D. $y = \frac{17}{2}x 16$
 - E. y = 10x 22

8. An object moving through space has position, in feet, after t seconds, is given by

$$s(t) = e^{-2t} + \ln{(2t+3)}.$$

- Find the acceleration of this object when t = 2.
 - A. -0.1549 ft/sec^2
 - B. -0.0084 ft/sec^2
 - $C.~0.0324~\mathrm{ft/sec^2}$
 - D. 0.1549 ft/sec^2
 - E. 0.2491 ft/sec^2

9.

$$f(x) = \frac{4x^2 + 5x - 7}{3x - 1}$$

Find f'(x).

- A. $\frac{36x^2 + 22x 26}{(3x-1)^2}$
- B. $\frac{8x-12x^2-16}{(3x-1)^2}$
- C. $\frac{36x^2+38x-26}{(3x-1)^2}$
- D. $\frac{12x^2+22x-26}{(3x-1)^2}$
- E. $\frac{12x^2-8x+16}{(3x-1)^2}$

10.

$$f(x) = \tan\left(\frac{2x+3}{x}\right)$$

Find f'(x).

- A. $\frac{3}{x^2} \sec\left(\frac{2x+3}{x}\right) \tan\left(\frac{2x+3}{x}\right)$ B. $\frac{3}{x^2} \sec^2\left(\frac{2x+3}{x}\right)$ C. $-\frac{3}{x^2} \sec\left(\frac{2x+3}{x}\right) \tan\left(\frac{2x+3}{x}\right)$ D. $-\frac{3}{x^2} \sec^2\left(\frac{2x+3}{x}\right)$
- E. $\frac{3}{x^2} \sec(x) \tan(x)$

11.

$$f(x) = x \sin x$$

Compute f''(x).

- A. $2\cos x x\sin x$
- B. $x \cos x + \sin x$
- C. $x \cos x \sin x$
- D. $x \sin x + \cos x$
- E. $x \cos x 2 \sin x$

12. The function

$$f(x) = 9x + \frac{1}{x} - 3$$

has critical points at $x = \frac{1}{3}$ and $x = -\frac{1}{3}$. Classify these critical points as relative minima, relative maxima, or neither.

- A. Two relative minima at $x = \frac{1}{3}$ and $x = -\frac{1}{3}$.
- B. A relative minimum at $x = \frac{1}{3}$ and a relative maximum at $x = -\frac{1}{3}$.
- C. A relative maximum at $x = \frac{1}{3}$ and a relative minimum at $x = -\frac{1}{3}$.
- D. Two relative maxima at $x = \frac{1}{3}$ and $x = -\frac{1}{3}$.
- E. This function has no extrema.

MA 23100 - Sample Final Exam

13. Find the point(s) of inflection for the curve

$$y = \frac{1}{x^2 + 12}.$$

- A. $x = \sqrt{3}$ and $x = -\sqrt{3}$
- B. x = 2 and x = -2
- C. x = 4 and x = -4
- D. x = 0
- E. $x = \sqrt{12}$ and $x = -\sqrt{12}$

14. Compute

$$\lim_{x \to \infty} \frac{1 + x^3 - 5x^6 + 8x^9}{3 + 32x^2 - 8x^8 - 5x^9}.$$

- A. 0
- B. $\frac{1}{3}$
- C. $-\frac{8}{5}$
- D. ∞
- E. $-\infty$

MA 23100 - Sample Final Exam

15. Find the absolute maximum value of

$$f(x) = x^3 - 12x + 7$$

- over the interval [1,3].
 - A. -9
 - B. -4
 - C. -2
 - D. 20
 - E. 23

- 16. A certain type of apple tree produces 400 lbs of apples per tree yearly when there are 50 trees planted in a single acre plot. However, for every additional tree planted in the same plot, the production of *each* tree decreases by $\frac{1}{2}$ lb. How many trees should be planted in the acre plot in order to produce the maximum total amount of apples?
 - A. 350
 - B. 375
 - C. 400
 - D. 425
 - E. 450

17. Suppose

$$x^3 + 4xy - 5y^3 = 9.$$

Compute y'.

- A. $\frac{3x^2+4y}{15y^2-4x}$
- B. $\frac{3x^2+4y-9}{15y^2-4x}$ C. $\frac{3x^2+4y-9}{15y^2}$ D. $\frac{3x^2+4y}{15y^2}$ E. $\frac{3x^2}{15y^2-4}$

18.

$$f(x) = (3x^2 - 5x + 7)e^{-4x}.$$

Compute f'(x).

- A. $(20 24x)e^{-4x}$
- B. $(23 14x 12x^2)e^{-4x}$
- C. $(12x^2 14x + 23)e^{-4x}$
- D. $(3x^2 + x 2)e^{-4x}$
- E. $(26x 33 12x^2)e^{-4x}$

19.

$$f(x) = \ln\left(e^{x^2} + 4\right)$$

Compute f'(x).

- A. 2x
- B. $2x + \frac{1}{4}$
- $C. \frac{2xe^{x^2}}{e^{x^2}+4}$
- D. $\frac{1}{e^{x^2}+4}$ E. $\frac{1}{2xe^{x^2}}$

20. A certain radioactive substance decays exponentially with a half-life of 30 days. If a 500 gram sample is left in storage, how many grams will remain after 50 days?

- A. 11.6 g
- В. 83.3 g
- C. 113.9 g
- D. 157.5 g
- $E.\ 166.7\ g$

21. Compute

$$\int \left(x^3 + \frac{3}{x^3}\right) dx.$$

A.
$$\frac{1}{3}x^4 + \frac{1}{x^2} + C$$

B.
$$\frac{1}{3}x^4 - \frac{1}{x^2} + C$$

C.
$$\frac{1}{4}x^4 + \frac{3}{2x^2} + C$$

C.
$$\frac{1}{4}x^4 + \frac{3}{2x^2} + C$$

D. $\frac{1}{4}x^4 - \frac{3}{2x^2} + C$
E. $\frac{1}{4}x^4 - \frac{3}{4x^2} + C$

E.
$$\frac{1}{4}x^4 - \frac{3}{4x^2} + C$$

22. Compute

$$\int (3\cos 5x + 7\sin 8x)dx.$$

A.
$$\frac{7}{8}\cos 8x - \frac{3}{5}\sin 5x + C$$

B.
$$\frac{3}{5}\sin 5x - \frac{7}{8}\cos 8x + C$$

C.
$$56\cos 8x - 15\sin 5x + C$$

D.
$$15\sin 5x - 56\cos 8x + C$$

E.
$$15\sin 5x + 56\cos 8x + C$$

23. Which sum is the Riemann Sum that approximates the integral

$$\int_{1}^{3} \frac{1}{x+1} dx$$

with n = 4?

- A. $\frac{1}{2} \left(\frac{1}{\frac{3}{2}+1} + \frac{1}{2+1} + \frac{1}{\frac{5}{2}+1} + \frac{1}{3+1} \right)$
- B. $\frac{1}{2} \left(\frac{1}{\frac{1}{2}+1} + \frac{1}{1+1} + \frac{1}{\frac{3}{2}+1} + \frac{1}{3+1} \right)$
- C. $\frac{1}{2} \left(\frac{1}{\frac{1}{2}+1} + \frac{1}{1+1} + \frac{1}{\frac{3}{2}+1} + \frac{1}{2+1} \right)$
- D. $\frac{1}{4} \left(\frac{1}{\frac{3}{2}+1} + \frac{1}{2+1} + \frac{1}{\frac{5}{2}+1} + \frac{1}{3+1} \right)$
- E. $\frac{1}{4} \left(\frac{1}{\frac{1}{2}+1} + \frac{1}{1+1} + \frac{1}{\frac{3}{2}+1} + \frac{1}{2+1} \right)$

24. Compute the area under the curve

$$y = 2x + \frac{2}{x}$$

over the interval [2, 5].

- A. 33.61
- B. 28.22
- C. 25.61
- D. 22.83
- E. 21.21

MA 23100 - Sample Final Exam

25. Compute

$$\int_0^\pi \left(e^{2x} + \sin x\right) dx.$$

- A. $\frac{1}{2}e^{2\pi} \frac{5}{2}$ B. $\frac{1}{2}e^{2\pi} + \frac{3}{2}$ C. $2e^{2\pi} 4$

- D. $2e^{2\pi}$
- E. $e^{\pi^2} + 1$