In this chapter we give perspective to your study of differential equations in several
different ways. First, we use two problems toillustrate some of the basicideasthat we
will return to,and elaborate upon, frequently throughout the remainder of the book.

" Later, to provide organizational structure for the book, we indicate several ways
of classifying differential equations. Finally, we outline some of the major trends.
in the historical development of the subject and mention a few of the outstanding
mathematicians who have contributed to it. The study of differential equations has
attracted the attentioni of many of the world’s greatest mathematicians during the
past three centuries. Nevertheless, it remains a dynamlc ﬁeld of inquiry today, w1th_
many interesting open questlons

Some Basnc Mathematlcal Models; Di;’ei;n Fi.é'lﬁ-: o

Before embarklng on aserious study of differential equations (forexample, by read-
ing this book or major portions of'it), you should have some idea of the possible
benefits to be gained by doing so. For some students the intrinsic interest of the
subject itself is enough motivation, but for most it is the likelihood of 1mp01tant_
applications to other fields that makes the undertaking worthwhile. ' :
Many of the principles, or laws, underlying the behavior of the natural world are
statements or relations involving rates at which things happen. When expressed
in mathematical terms, the relations are equations and the rates are derivatives.
Equations containing derivatives are differential equations. Therefore,to understand. -
- and to.investigate problems involving the motion of fluids, the flow of current in elec-
tric circuits, the dissipation of heat in'solid objects, the propagation and detection of
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Chapter 1. Introduction

seismic waves, or the increase or decrease of populations, among many others, it is
necessary to know something about differential equations.

A differential equation that describes some physical processiis often called a math-
ematical model of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to equations that are easy to
solve. It is noteworthy that.even the simplest differential equatlons provide useful
models of important physical processes.

Suppose that an object is falling in the atmosphere near sea level Formulate a differential
equation that describes the motion.

We begin by introducing letters torepresent various quantities thatmay be of interest in this
problem. The motion takes place during a certain time interval, so let us use ¢ to denote time.
Also, let us use v to represent the velocity of the fallingobject. The velocity will presumably
change with time, so we think of v as a function of ¢; in other words, ¢ is the indepcndent
variable and v is the dependent variable. The choice of units of measurement is somewhat
arbitrary, and there is nothing in the statement of the problem to suggest appropriate units,
so we are free to make any choice that seems reasonable. To be specific, let us measure time
t in seconds and velocity » in meters/second. Further, we will assume that v is positive in the
downward direction—that is, when the object is falling,

The physical law that governs the motion of objects is Newton’s second law, which states
that the mass of the object times its acceleration is equal to the net force on the object. In
mathematical terms this law is expressed by the equation :

F = ma, 3 ' 1)

where 1 is the mass of the object, a is its acceleration, and F is the net force exerted on the
object. To keep our units con_sist_ent,'we. will measure m in kilograms, a in meters/second?, and
F in newtons..Of course, « is related to v by a= d_v/dt,_so_ we can rewrite Eq. (1) in the form

F=mdydy. ©)

Next, COﬂSldCl the forces that acton thc object as lt falls GlaVlty exerts a force equal to
the welght of the object, or mg, where g is the acceleration due to gravity. In the units we have
chosen, g has been determined experimentally to be approxlmately equal to 9.8 m/s? near
the earth’s surface. There is:also a force diie to air resistance, or drag, that is more difficult to
model. This is not the place for an extended discussion of the drag force; suffice it to say that it
is often assumed that the dragis proportional to the velocity,and we will make that assumption
here. Thus the drag force has the magnitude yv, where y is a constant called the drag coefficient.
The numerical value of the drag coefficient varies widely from one object to another; smooth
streamlined objects have much:smaller drag coefficientsthan rough bluntones. The physical
units for y are mass/time, or kg/s for this pxoblem if these units seem peculiar, remember that
.yvmust have the units of force, namely,kg.m/s2.

In writing an expression for the net force F, we need to remembe1 that gravity alwaysacts
- in the downward (positive) direction, whereas, for a f_allmg object, drag acts in the upward
~ (negative) direction, as shown in Figure 1.1.1. Thus :

F=mg=yo ' 3)
and Eq; ) theﬁ be'(_iomes | . ._ | : o | .
| m%=WfW;='-e )

Equation (4) is a mathematical model of ‘an object falling in"the atmosphere near sea level.
Note that the model contains the three constants; g, and y. The constants m and y depend
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very much on the particular object that is falling, and they are usually different for different

- objects. It is common to refer to them as parameters, since they may take on a range of values

“EXAMPLE

AFalling

(continued)

during the course of an experiment. On the other hand, g is a physical constant, whose value
is the same for all objects.

YU
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FIGURE 1.1.1 Free-bédy diagram of the forces on a falling object.

To solve Eq. (4), we need to find a function v = v(¢) that satisfies the equation. It
is not hard to do this,and we willshowyou how in the next section. For the present,
however, let us see what we can learn about solutions without actually finding any of
them. Owr task is simplified slightly if we assign numerical values to m and y, but the
procedure is the same regardless of which values we choose. So, let us suppose that
m = 10 kg and y = 2 kg/s. Then Eq. (4) can be rewritten as

dv v
P 9.8 3 )

Investigate the behavior of solutions of Eq. (5) without solving the differential equation.
Firstlet us consider whatinformation can be obtained directly from the differentialequation
itself. Suppose that the velocity v has a certain given value. Then, by evaluating the right side of
Eq. (5),we can find the corresponding value of dv/dt. For instance, if v == 40, then dv/dt = 1.8.
This means that the slope of a solution v = v(t) has the value 1.8 at any point where v = 40.

" We can display this information graphically in the tv-plane by drawing short line segments

with slope 1.8 at several points on the line v = 40. Similarly, if v = 50, then dv/dt = —0.2, so
we draw line segments with slope —0.2 atseveral points on the line v = 50. We obtain Figure
1.1.2 by proceeding in the same way with other values of v. Figure 1.1.2 is an example of what
is called a direction field or sometimes a slope field. -

Remember that a solution of Eq. (5) is a function v = v(¢) whose graph is a curve in the
tv-plane. The importance of Figure 1.1.2 is that each line segment is a tangent line to one
of these solution curves. Thus, even though: we have not found any solutions, and no graphs of
solutions appear in the figure, we can nonetheless draw some qualitative conclusions about
the behavior of solutions. For instance, if v is less than a certain critical value, then all the line
segments have positive slopes, and the speed of the falling object increases as it falls. On the
other hand, if v is greater than the critical value, then the line segments have negative slopes,
and the falling object slows down as it falls, What s this critical value of v that separates objects
whose speed is increasing from those whose speed is decreasing? Referring again to Eq. (5),
we ask what value of v will cause dv/dt to be zero. The answer is v = (5)(9.8) = 49 m/s.

In fact, the constant function v(z) =49 is a solution of Eq. (5). To verify this statement,
substitute v(t) = 49 into Eq. (5) and 'observe that each side of the equation is zero. Because
it does not change with time, the solution v(¢) = 49 is called an equilibrium solution. It is
the solution that corresponds to a perfect balance between gravity and drag. In Figure 1.1.3
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we show the equilibrium solution v(f) = 49 superimposed on the direction field. From this
figure we can draw another conclusion, namely, that all other solutions-seem to be converging
to the equilibrium solution as ¢ increases. Thus, in this context, the equilibrium solution is often
called the terminal velocity.

'FIGURE 1.1.3. Direction field z;nd equilibrium solution for Eq. (5): dﬁ/d( =98~ (v/9).

The approach illustrated in Example 2 can be applied equally well to the more
general Eq. (4), where the parameters m and y are unspecified positive numbers.
The results are essentially identical to those of Example 2. The equilibrium solution
of Eq. (4)is v(t) = mg/y. Solutions below the equilibrium solutionincrease with time,
those above it decrease with time, and all other solutions approach the equilibrium
solution as ¢ becomes large.
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Direction Fields. Direction fields are valuable tools. in studymg the solutlons of
differential equations of the f01m : :
Geren e
where f is a given function of the two. variables ¢ and y, sometimes referred to as the
rate function. A direction field for equations. of the form (6) can be constructed by
evaluating f at each point of a rectangular grid. Ateach point of the grid, ashort ling
segment is drawn whose slope is the value of f at that point. Thus each line segment
is tangent to the graph of the solution passing through that point. A direction field
- drawnon a fairly fine grid gives a good picture of the overall behavior of solutions of
a differential equation. Usually a grid consisting of afewhundred points is sufficient:
The construction of a direction ﬁeld is often a useful first step in the mvestlgatlon of
a differential equation. '

Two observations are worth par ticular mentlon Fnst in constructing a direction
field, we do not have to solve Eq. (6); we just have to evaluate the given function
f(t,y) many times. Thus direction fields can be readily constructed even for equations
that may be quite difficult to solve. Second, repeated evaluation of a given function
is a task for which a computer is well suited, and you should usually use a computer
to draw a direction field. All the direction fields shown in this book, such as the one
in Figure 1.1.2, were computer-generated. ' '

Field Mice and Owls. Now let us look at another, quite different example. Consider.
a population of field mice who inhabit a certain rural area. In the absence of
predators we assume that the mouse population increases at a rate proportional
to the current population. This assumption is not a well-established physical law
(as Newton’s law of motion is in Example 1), but it is a common initial hypothesis*
in a study of population growth. If we denote time by ¢ and the mouse population by
p(t), then the assumption about population growth can be expressed by the equation

_.dt =P S : . @
where the proportionality factor r is called the rate constant or growth rate. To be
specific, suppose that time is measured in'months and that the rate constant r has the
value 0.5/month. Then each term in Eq. (7) has the units-of mice/month.

Now let us add to the problem: by supposing that several owls live in the same
neighborhood and that they kill 15 field mice per day. To incorporate this information
into the model, we must add another term to the differential equation (7), so that it
becomes

dp

= 0.5p — 450. o 8
7 P (8)

Observe that the predation term is —450 rather than ~15 because time is measured
“in months, s0 the monthly pr edatlon rate is needed

'A better model of population growth is:discussed:in Section:2.5.-
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Investigate the solutions of Eq. (8) graphically.

A direction field for Eq. (8) is shown in Figure 1.1.4. For sufficiently large values of p it can
be seen from the figure, or directly from Eq. (8) itself, that dp/dt is positive, so that solutions
increase. On the other hand, if p is small, then dp/dt is negative and solutions decrease. Again,
the critical value of p that separates solutions that increase from those that decrease is the
value of p for which dp/dt is zero. By setting dp/dt equal to zero in Eq. (8) and then solving
forp,we find the equilibrium solution p(¢) = 900, for which the growth term and the predation
term in Eq. (8) are exactly balanced. The equilibrium solution is also shown in Figure 1.1.4.

FIGURE1.1.4 Direction field and equilibrium solution for Eq. (8):dp/dt = .15[) —450.

Comparing Examples 2 and 3, we note that in both cases the equilibrium solution
separates increasing from decreasing solutions. In Example 2 other solutions con-
verge to, or are attracted by, the equilibrium solution, so that after the object falls far
enough, an observer will see it moving at very nearly the equilibrium velocity. On
the other hand, in Example 3 other solutions diverge from, or are repelled by, the
equilibrium solution. Solutions behave very differently depending on whether they
start above or below the equilibrium solution. As time passes, an observer might see
populations either much larger or much smaller than the equilibrium population, but
the equilibrium solution itself will not, in practice, be observed. In both problems,
however, the equilibrium solution is very important in undelstandmg how solutions
of the given differential equation behave.

A more general version of Eg. (8) is

dp

-k, 9
= %)

where the growth rate r and the predation rate £ are unspecified. Solutions of this
more general equation are very similar to those of Eq. (8). The equilibrium solution
of Eq. (9) is p(t) = k/r. Solutions above the equilibrium solution increase, while
those below it decrease.

You should keep in mind that both of the models discussed in this section have
their limitations. The medel (5) of the falling object is valid only as long as the
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object is falling freely, without encountering any obstacles. The population model
(8) eventually predicts negative numbers of mice (if p < 900)-or enormously large
numbers (if p > 900). Both of these predictions are unrealistic,so this model becomes
unacceptable after a fauly sh01t time interval. :

Constructing Mathematical Models.. In applying differential equations to any of the
numerous fields in which they are useful, it is necessary first to-formulate the appro-
priate differential equation that describes,.or models, the problem being investigated.
In this section we have looked at two examples of this modeling process, one drawn
from physics and the other from ecology. In constructing future' mathematical mod-
els yourself, you should recognize that each problem is different, and that successful
modeling cannot be reduced to the observance of a set of prescribed rules, Indeed,
constructing a satisfactory model is sometimes the most difficult part of the problem.
Nevertheless, it may be helpful to list some steps that are often part of the process:

1. Identlfy the independent and. dependentvanables and 3331gn letters to represent them.
Often the independent variable is time. :

2. Choose the units of measurement for each variable. In a sense the choice of units is
arbitrary, but some choices may be much more convenient than others. For example, we
chose to measure time in'seconds for the falling-object problem and in months f01 the
population problem.

3. Articulate the basicprinciple that underlies or governs the problem you are investigating.
This may be a widely recognized physical law,such-as Newton’s law of motion, or it may be
amorespeculative assumption that may be'based on your own-experience or observations.
In any case, this step is likely not to be a purely mathematical one, but will require you to
be familiar with the field in \Vthh the problem originates.

4. Express the principle or law in step 3 in terms of the variables you chose in step 1. This
may be easier said than done. It may require the introduction of physical constants or
parameters (such as the drag coefficient in Example 1) and the determination of appro-
priate values for them. Or it-may involve the use of auxiliary or mtelmedlate variables
that must then be related to the primary variables.

S.” Make sure that all terms in your equation have the same physmal units, If this is not the
case, then your equation is wrong and you should seek torepair it. If the units agree, then
your equation atleastis dimensionally consistent,althoughit may have other shortcommgs :
that this test does not reveal.

6. In the problems considered here, the result of step 4 is a single dlffelentlal equatlon which
constitutes the desired mathematical model. Keep in mind, though, that in more complex
problems the resulting mathematical-model may be much more complicated, perhaps
involving a system of several differential equations, for example. '

PROBLEMS In each of Problems.1 through 6; draw a direction field _f01_" t_.he'.gi.ve_n differential equation.
= Based on the direction field, determine the behavior of y as ¢ — co. If this behavior depends
on the initial value of y at t = 0, describe the dependency.

&l 1 y=3-2y &L 2.y=2y-3
& 3.y =3+2 &L 4 y=-1-2

& 5. .y=1+2 . & 6.y =y+2
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In each of Problems 7 through 10, write down a differential equation of the form
dy/dt = ay + b whose solutions have the required behavior as ¢ — oo.

7. All solutions approach y = 3. : 8. Allsolutions approach y = 2/3.
9. All other solutions diverge fromy =2. 10. All 'other_solutions diverge fromy = 1/3.

In each of Problems 11 through 14, draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t — co. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that in these problems the
equations are not of .the form y* = ay + b, and the behavior of- then solutions is somewhat
more complicated than for the equations in the text.

-yS=y)

Consider the following list of differential equations, some of which produced the direction
fields shown in Figures 1.1.5 through 1.1.10. In each of Problems 15 through 20 identify the
differential equation that corresponds to the given direction field.

(@) y'=2y-1 (b) y=2+y ©y=y-2
(d) y=y(y+3) _ (e) y'=yo-3). ) y'=1+2y
(& y=-2-y (h) y'=yB-». g (i) y'=1-2y
0y =2-y '

15. The direction ﬁeld of Figure.l.LS.
16. The direction field of Figure 1.1.6:

FIGURE115 Problem15. . . FIGURELLG Problem 16.

17. The direction field of Figure 117
18. The direction field of Figure 1.1.8.

FlGURE 1 1.7 Ploblem 17 : | FIGURE 118 Problem 18
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19. The direction field of Figure 1.1.9.
The direction field of Figure.1.1.10.

20.

21.

22,

2.

24.
. 5 mg/cm® of the drug enters the patient’s bloodstream at a.rate of 100 cm?/h. The drug, is

@;52,25

FIGURE 1 1 9 Ploblem 19

A pond initially contains 1,000,000 gal of water and an‘unknown amount of an undesnable
chemical. Water containing 0.01 g of this chemical per gallon flows into the pond atarate
of 300 gal/h. The mixture flows out at the same rate, so the amount of water in the pond
remains constant. Assume’ that the chemical is uniformly distributed throughout the pond.

(a) Write a differential equation for the amount of chemical in the pond at any time.

(b) How much of the chemical will be in the pond after a very long time? Does this limiting
amount depend on.the amount that was present initially?

A spherical raindrop evaporates at a rate proportional to its surface area. Write a
differential equation for the volume of the raindrop as a function of time.

Newton’s law-of cooling states that the temperature of an.object changes at a rate propor-
tional to the difference between the temperature of the object itself and the temperature
of its surroundings (the ambient air temperature in most cases). Suppose that the ambient
temperature is 70°F and that the rate constantis 0.05 (min)~!. Write a differential equation
for the temperature of the. object at any time. Note that the differential equation is the
same whether the temperature of the object is above or below the ambient temperature.

A certain drug is being administered intravenously.to a hospital patient. Fluid containi'ng

absorbed by body tissues or othenwlse leaves the bloodstream at a rate plopomonal to
the amount present, with a rate constant of 0.4 (h)~, '

(a) Assuming that the drug is always uniformly distributed throughout the bloodstneam
write a differential equation for the amount of the drug that is present in the bloodstream
at any time. : : :

(b) How much of the drug is present in the bloodstream after a long tlme‘?

For small, slowly falling objects, the assumption made in the text that the drag force
is proportional to the velocity is a good one. For larger, more rapidly falling ‘objects, it is
more accurate to assume that the drag foirce is propor tional to the square of the velocity.?
(a) Write a differential equation for the vélocity of a fallmg object of mass m if the mag-
nitude of the drag force is proportional to the : square of 'the velocity and its direction is
opposite to that of the velocnty

2See Lyle N. Long and Howard Weiss, “The Velocity Dependence of Aei‘odyn'amic Drég: A Primer for
Mathematicians,” American Mathematical Monthly 186 (1999), 2, pp. 127-135.
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(b) Determine the limiting velocity after a long time: -
(c) If m =10 kg, find the drag coefficient so that the limiting velocity is 49 m/s.
(d) Using the data in part (c), draw a direction field and compare it with Figure 1.1.3.

In each of Problems 26 through 33, draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t —+ oo. If this behavior depends
on the initial value of y at r = 0, describe this dependency. Note that the right sides of these
equations depend on ¢ as well as y; thenefone, their solutlons can exhibit more complicated
behavior than those in the text.

é@ 20,y =24t~y

&L W y=e'+y

&2 30. ¥y =3sint+1+y
&2 32y = 2 +y)/2y

@'Q, 27. y’= te=2 — 2y

&L 29. y=t+2
&3y =2-1-y
&L 3. y=ty-y-1ir

Inthe preceding section we derived the diffci’ential équ_ations

ni% =h1g— yb ' (1)
and d..
. P
— =1 —k.
wsk @

Equatlon (1) models a falling object, and Eq. (2) models a-population of field mice
preyed on by owls. Both of these equations are of the general form

e 3)

where a and b are given constants. We were able to draw:some important qualitative

“ conclusions about the behavior of solutions of Eqs. (1) and (2) by considering the

associated direction fields. To answer questions of a quantitative nature, however, we
need to find the solutions themselves, arid we now investigate how to do that.

Consider the equation

dl" 0.5p ~450; (4)
dt
which descubes the mtelactlon of certain populatlons of ﬁeld mice and owls [see Eq. (8) of
Section 1.1}. Find solutions of this equation.

To solve Eq. (4), we need to find functions p(¢) that when substltuted into the equation,
reduce it to an obvious identity. Here is one way to proceed. First, rewrite Eq. (4) in the form

-980 . -
?idé’; =2 o (5)
or,if p # 900, ' .
dp/dt 1
» =900 -2 ©)
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“By the chain rule the left side of Eq. (6) is'the derivative of In|p.— 900| with respect to't,so we

R have : :
d 1
n Ip 900/ ==, - . Q)
Then by intearating both sides oqu (7) we obtam . .
In p — 900] =S+C ®)

where C is an arbitrary constant of integration. Thelefme by takmg the exponential of both
sides of Eq (8), we ﬁnd that

_§P - 90{); '_m_tt LHVHE ecef,z : _ 0
or : o _ . .
' P =900 = et ' (10)
and finally S ' -
: - p== 900 4 ce'?, _ (11)

wherec = :t:e isalsoan albmaly (nonzelo)constant Note thatthe constantfunctlonp = 900
is also a solution of Eq. (5) and that it is contained in the expression (11) if we allow c to take
the value zero. Graphs of Eq. (11) for several values of c are shown in Figure 1.2.1.

FIGURE 121 Graﬁhs of'[)m = 900 + ce”? for several values of c.
.These are solut_ions_ofdp/dt = 0.5p — 450.

Note that the.y. have the chéract_ér inferred front the direc.:t.i.on ﬁeld in Figure 1.14. .For
instance, solutions lying on- either side of the equilibrium solution p =900 tend to diverge
from that solution.

In Example 1 we found infinitely many solutions of the differential equation (4),
corresponding to the infinitely many values'that the arbitrary constant ¢ in Eq. (11)
might have. Thisis typical of what happens when you solve a differential equation. The
solution process involves an integration, which brings with it an arbitrary constant,
whose possible:values generate an infinite family of solutions,
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Frequently,we want:tofocus our attention on a singlemember of theinfinite family
of solutions by specifying the value of the arbitrary constant. Most often, we do this
indirectly by specifying instead a point that must lie on the graph of the solution. For
example,to determine the constant cin Eq. (11),wecouldrequire that the population
haveagivenvalue atacertain time,such as the value 850 at time ¢ = 0.In other words,
the graph of the solution must pass through the pomt (0, 850). Symbolically, we - can
express this condition as

_ p(0) =850. . (12)

Then, substituting t = 0 and p = 850 into Eq. (1 1), we obtain
850 = 900 + c. |

Hence ¢ = —50, and by inserting this value into Eq. (11), we obtain the desired
solution, namely, _
p =900 —50e"2, - (13)

The additional condition (12) that we used to determine ¢ is an example of an
initial condition. The differential equation (4) together with the initial condition (12)
form an initial value problem L

Now consider the more general problem con81stmg of the differential equation (3)

and the initial condition _ _
yO) =ye, (14)

where yj is an arbitrary initial value. We cansolve this problem by the same method

as in Example 1.Ifa # 0and y # b/a,then we canrewrite Eq. (3) as

dy/(lt T
=a : 15
y— (bja) - (15)
By mteglatmg both sides, we find that _
In y— (b/a)I =at+C, (16)

where Cis arbitrary. Then takmgthe exponentlal ofboth sides of Eq. (16) andsolving
for y, we ‘obtain

= (b/a) + ce", 17)

where ¢ = e is also arbitrary. Observe that ¢ = 0 corresponds to the equilibrium
solution y = b/a. Finally, the initial condition (14) requires that ¢ = y¢ — (b/a), so

the solution of the initial value problem (3), (14) is

= (b/a) + lye — (bJa)le™. (18)

For a # 0 the expression (17) contains all possible solutions of Eq. (3) and is called
the general solution.> The geometrical representation of the general solution (17) is
an infinite family of curves called integral curves. Each integral curve is associated
with a particular value of c and is the graph of the solution corresponding to that

3fa = 0,then the'solution of Eq.(3) is not given by Eq. (17). We leaveit'to y'ou'to find the general solution
in this case.- '
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.value of c. Satisfying an initial condition amounts to-identiinng the integral curve
that passes through the given initial point..

To relate the solution(18) to Eq. (2), which models the field mouse populatlon we
need only replace a by the growth rate » and replace b by the predation rate k. Then
the solution (18) becomes '

= (k/r) +Ipo — (k/»)le”, . . 19)
where pg is the initial popul_ation of field mice. The solution (19) confirms the conclu-
sions reached onthe basis of the direction field and Example 1. If pg = k/r,thenfrom
Eq. (19) it follows that p = k/r for:all £; this is the constant, or equilibrium, solution.
If po 5 k/r, then the behavior of the solution depends on the sign of the coefficieiit:

— (k/r) of theexponentialtermin Eq. (19). If py > k/r,then p grows exponentially
with time ¢;if pg < k/r,then p.decreases and eventually becomes zero, corresponding
to extinction of the field mouse population: Negative values of p, while possible for

~ the expression:(19), make no sense in the context of this particular problem.
To put the falling-object equation (1) in the form (3), we mustidentify a with —y/m

.- and-b with —g. Making these substitutions-in the solution (18), we obtain

v = (mg/y)+ v = (mg/P)le "™, . (20)

where vy is the initial velocity. Again, this solution confirms the conclusions reached
in Section 1.1 on the basis of a d_irection field. There.is an equilibrium, or constant,
solution v = /ng/y,and all other solutions tend to approach this equilibrium solution.
The speed of convergence to the equilibrium solution is determined by the exponent
—y/m. Thus, for a given mass m, the velocity approaches the equilibrium value more
rapidly as the drag coefficient y increases.

S.u.ppose that, as in ' Example 2 (.)f'Séct.i'on 1.1,wé consider a falling object of mass m = 10 kg.

and drag coefficient y = 2 kg/s. Then the equation of motion (1) becomes
dv - '
=9, 8 - = (21
S : @

Suppose this object is di opped from a height of 300:m: Find its 'velocity at any time . HOW:
long will it take to fall to the ground; and how fast will it be moving at the time of impact?
The firststep is to state an appropriate initial condition for Eq. (21). The word “dropped”in
the statement of the problem suggests that the initial velocity is zero, so we Wlll use the initial
condition

v@=0.. .. ... y _ | (22)'

The solution of Eq. (21) can: be found by substituting the values of the coefficients into the
solution (20),but we willproceedinstead tosolve Eq. (21)directly. First,rewtite the equation as

dv/dt 1 ' . o
=z : . (23
_ v—49 5. .. i ' @3)
By integrating both sides, we obtain '
In v — 49] =;§ +C @

and then the general'solution ofEq. (21) is _
v =49 + e, . - (25)
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where c is arbitrary. To determine c, we substitute t = 0 and v = 0 from the initial condition
(22) into Eq. (25), with the result that ¢ = —49. Then the solution of the initial value problem
(21), (22) is

= 49(1 — "%y, (26)

Equation (26) gives the velocity of the falling object at any positive time (before it hits the
ground, of course).

Graphs of the solution (25) for several values of ¢ are shown in Figure 1.2.2, with the solution
(26) shown by the black curve. It is evident that all solutions tend to approach the equilibrium
solution v = 49. This confirms the conclusions we reached in Section 1.1 on the basis of the
direction fields in Figures 1.1.2 and 1.1.3.

FIGURE 1.2.2 Graphs of the solution (25), v = 49 + ce~/3,for several
values of ¢. The black curve corresponds to the initial condition v(0) = 0.

To find the velocity of the object when it hits the ground, we need to know the time at which
impact occurs. In other words, we need to determine how long it takes the object to fall 300 m.
To do this, we note that the distance x the object has fallen is related to its velocity v by the
equation v = dx/dt, or ) :

dx

ax _ Sy '
- 49(1 — ™7y, | 27

Consequently, by integrating both sides of Eq. (27), we have
x =49t +245¢ +¢, (28)

where c is an arbitrary constant of integration. The object starts to fall when ¢ = 0, so we know
that v = 0 when ¢t = 0. From Eq. (28) it follows that ¢ = —245, so the distance the object has
fallen at time ¢ is given by

X = 49t + 245¢71/5 — 245, (29)

Let T be the time at which the object hits the ground; then x = 300 whent = T. By substituting
these values in Eq. (29), we obtain the equation

49T +245¢7 15 — 545 = 0. (30)
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Thevalue of T satisfying Eq. (30)canbeapproximatedbya numerical process* using a scientific
calculator or computer, with the result that 7' = 10.51's. At this time, the corresponding velocity
vy is found from Eq. (26) to be vr = 43.01 m/s. The point (10 51,43. 01) is also shown in
Figure 1.2.2.

Further Remarks on Mathematical Modeling. Up to this point we have related our discus-

sion of differential equations to mathematical models of a falling object and of a

hypothetical relation between field mice and owls. The derivation of these models

may have been plausible, and possibly even convincing, but you should remember

that the ultimate test of any mathematical model is whether its predictions agree

- with observations or experimental results. We have no actual observations or exper-

' ~imental results to use for comparison purposes here, but thele are several sources of
possible discr epancnes _

In the case of the falling ob]ect, the under lymg phymcal principle (Newton’s law
of motion) is well established and widely applicable. However, the assumption that
the drag force is proportional to the velocity is less certain. Even if this assumption is

- correct, the determination of the drag coefficient y by direct measurement presents
difficulties. Indeed, sometimes one finds the drag coefficientindirectly—for example,
by measuring the time of fall from a given height and then calculating the value of y
that predicts this observed time.

The model of the field mouse populatlon is sub;ect to various uncertainties.
The determination of the growth rate r and the predation rate k depends on
observations of actual populations, which may be subject to considerable variation.
The assumption that r and k are constants may also be qiiéstionable. For example,
a constant predation rate becomes harder to sustain as the field mouse population
becomes smaller. Further, the model predicts that a population above the equilib-
rium value will grow exponentially larger and larger. This seems at variance with the
behavior of actual populatlons see the further discussion of populatlon dynamics in
Section 2.5.

If the differences between actual observations and a mathematical model’s pre-

~ dictions are too great, then you need to consider refining the model, making more
careful observations, or perhaps both. There is almost always a tradeoff between
accuracy and simplicity. Both are desirable, but a gain in one usuallyinvolves.a loss
intheother.However,evenifa mathematical modelis incomplete or somewhat inac-
curate,it may nevertheless be useful in-explaining qualitative features of the problem
under investigation. It may also give satisfactory results under some circumstances
but not others. Thus you should always use good judgment and common sense in
constr ucting mathematical models and in usmg their predictions. :

_ PROBLEMS é?, 1. Solve each of the following initial value problems and plot the solutions for several values
of yo. Then describe i in a few words how the soluuons resemble, and differ. from, each
other.

(@) dy/dt=-y+5, »0)=

4A computer algebra system provides this capability; many calculators also have built-in routines for
solving such equations. .
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(b) dy/dt=-2y+5,  y©0) =yo
(c) dy/dt=-2y+10, - y(0) =y

. Follow the instructions for Problem 1 for the followmglmtlal value problems:

(b) dy/dt = ZY 5 y(O) =Y
(c) dy/dt=2y—10, - y©) =0

. Consider the differential equation

dy/dt :_;a}+b,

where both a and b are positive numbers.
(a) Find the general solution of’ the dlfferentlal equation.
(b) Sketch the solution for several different initial condmons
(c) Describe how the solutlons change under each of the followmg conditions:
i. aincreases. .
ii. bincreases. : S » L
iii. Both a and b increase, but the ratio b/a- remains the same:

. Consider the differential equatiori dy/dt = ay b.

(a) Find the equilibrium solution.y,.

(b). Let Y(t) = y — ye; thus Y(#) is the dev1at10n from the equnhbuum solution. Find the -
differential equation satlsﬁed by Y(l)

. Undeferinined Coefficients. Here is an alternative way to solve the-equation

dyfdt=ay~b. (i)
(a) Solve the simpler equation S e o C
Cdyfdt=ay.; . . _ (i)
Call the solution y; (7). .

(b) Observethatthe only dlffelence between Eqs (1) and (n) is the.constant —b in Eq. (i).
Therefore, it may seem reasonable to assume that the solutions of these two equations
also differ only by a constant. Test this assumptlon by trying. to find a constant & such that
y= y;(t) + k is a solution of Eq. (1)

(c) Compale your solutlon from part (b) with the solutlon glven in the text in Eq. (17).
Note: This method can also be used in some cases in whxch the constant b is replaced
by a function g(?). It depends on whether you can guess the genelal form that the solution

is likely to take, This method is described in detail in Sectlon 3. 5 in connection with second
order equations.

- Use the method of Problem 5 to solve the equatlon

cdy/dt = —ay +b.
The field nionse population in Example 1 satisfies the differential equation
dp/dt = 0.5p — 450.

(a) Find the time at which the population becomes extinct if p(0) = 850.
(b) Find the time of extinction if p(0) = po, where 0 < po < 900.
(c) Find the initial population py if the population is:to become extinct in 1 year.
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Consider a population p-of ﬁeld mice that g10\vs at-a late proportional to the current
population, so that dp/dt =

(a) Find the rate constant r 1f the populauon doubles in 30. days
(b) Find r if the populatlon doublesin N days.

- The falling object in Example 2 satlsﬁes the mmal value ploblem

~dv/dt = 98 (v/5), v(0).=

() Find the time that must elapse for the object to reach 98% of its limiting velocity.
(b) How far does the object fall in the time found in part (a)?
Modify Example 2 so that the falling object experiences no air resistance.
(a) Write down the modified initial value problem.
(b) Determine how longit takes the object to reach the ground
(c) Determine its velocityat the time of impact.
Consider the falling objectof mass 10 kg in Example 2,but assume now that the drag force
is proportional to the square of the velocity.

(a) If the limiting velocity is 49 m/s (the same as in Example 2) show that the equatlon
of motion can be written as .

dv/d't = [(@9)% — v*]/245.

Also see Problem 25 of Section 1.1. _

(b) If v(0) = 0,find an expression for v(f) at any time.

(c) Plot your solution from part (b) and the solution (26)- from Example 2 on the same
axes. :

(d) Based on your plots in part (c), compare the effect of a quadlatlc drag force with that
of a linear drag force. .

(e) Find the distance x(1) that the object falls in time ¢.

S Find the time T it takes the object to fall 300 m.

12.

13

14.

15.
* u(t) of an object satisfies the differential equation-

Aradioactive mater lal suchastheisotopethorium-234, dlsmtegr atesatarate proportional .
tothe amount cmrrently present. If Q(f) is the amount: present attime t,thendQ/dt = —rQ,
where r:> 0is the decay rate."

(a) If 100 mg of thorium-234 decays to 8204-mg in 1 week, determine the decay rate r.
(b) Find an expression for the amount of thorium-234 present at any time .

(c) Fmd_ the time required for the thorium-234 to decay to one-half its original amount.
The half-l_ife of a 1'adioactive'mate1'lal 1s the _time_req’uired'for an amount of this material
to decay to one-half its original value. Show that for any radioactive material that decays
according tothe equauon Q= —rQ,_the half-life ¢ and'the decay rate r satisfy the equation

re=1n2.

Radium-226hasa half-life 0f1620 years. Find the time perlod dun ing which a given amount
of this material is reduced by onée-quarter.

According to Newton’s law of cooling (see Problem 23 of Section 1.1), the temperature

%ftf = '——k(u ~T),

where T is the constant ambient temperature and & is a posmve constant. Suppose that
the initial temperature of the object is #(0) = u4.

(a) Find the temperature.of the object at any time.
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16.

17.

& 18.

19.

(b) Lett be the time at which the initial temperature dlffelence up — T has been reduced
by half. Find the relation between kand 7.

Supposethata bunldmgloses heat in accordance withNewton’slaw of cooling (see Problem
15) and that the rateconstant k has the value 0.15 h!. Assume that the interior temperature
is 70°F when the heating system fails. If the external temperature is 10°F, how long will it
take for the interior temperature to fall to 32°F? :

Consider an electric circuit containing a capacnton, resistor, and battery; see Figure 1.2.3.
The charge Q(t) on the capacitor satisfies the equation® .

where Ris the resistance, C is the capac1tance and Vis the constant voltage supplied by
the battery.

(a) If Q(®) =0, ﬁnd Q(t) at any tlmet and sketch the glaph of Q versus ¢.

(b) Find the limiting value Q, that Q(¢) approaches after a long time.

(c) Suppose that Q(t;) = Q,, and that at time ¢-= £; the battery is removed and the circuit
is closed again. Find Q(¢) for t > t;-and sketch its graph. :

R

My

D T

)

FIGURE 1.2.3 The electric- c1rcu1t of Problem 17.

A pond containing 1,000,000 gal of water is initially free of a certain undesirable chemical
(see Problem 21 of Section 1.1). Water containing 0.01 g/gal of the chemical flows into the
pond.at arate of 300 gal/h, and water also flows out of the pond at the same rate. Assume
that the chemical is uniformly distributed throughout the pond.

(a) Let Q(f) be the amount of the chemical in the pond at time ¢. Write down an initial
value problem for Q(¢). .

(b). Solve the problemin.part (a) for Q(t) How much chemlcal isin the pond after 1 year?
(c) At the end of 1 year the source of the chemical in-the pond is removed; thereafter
pure water flows into the pond, and the mixture flows out at the same rate as before. Write
down the initial value problem that describes this new situation.

(d) Solve the initial value problem in part-(c). How much chemical remains in the pond
after 1 additional year (2 years from the beginning of the problem)?

(e) How long does it take for Q(¢) to be reduced to 10 g?

(f) Plot Q(8) versust for 3 years.

Your swimming-pool containing 60,000 gal. of water has been contaminated by 5 kg of
a nontoxic dye-thatleaves a swimmer’s skin an unattractive green. The pool’s filtering
system can take water from the pool, remove the dye, and return the water to the pool at
a flow rate of 200 gal/min.

5This equation results from Kirchhoff’s laws,which-are discussed in'Section3.7.




I@ésiﬁca’tion of Differential Equations ' _ _ 19

(a)- Write down the initial value problem for the ﬁltelmg plocess let g (¢) be the amount
of dye in the pool at any.time:. : e

(b) Solve the problem in‘part (a). :

(c) Youhaveinvitedseveral dozen friends to apool party thatisscheduled to begin in 4 h.
You have also determined that:the effect of the dye is imperceptible if its concentration
is less than 0.02 g/gal. Is your filtering system capable-of reducing the dye concentration
to this level within 4 h?

(d) Find the time T at which the.concentration of dye first reaches the value 0.02 g/gal.

(e) Fmd the ﬂow rate that is° sufﬁc1ent to achleve the concentlatlon 0.02 g/gal within 4 h.

The main pu1pose of this book is to discuss some of the pr opeltles of solutions of
differential equations, and to preserit some of the methods that have proved effective
in finding solutions o, in some cases, approximating them. To provide a framework
for our presentation, we descnbe hele several useful ways of classifying differential
equatlons

‘Ordinary and Partial Differential Eqiations. One. important classification is based on
whether the unknown function depends on a single independent variable or on sev-
eral independent variables. In the first case, only ordinary derivatives appear in the
differential equation, and itis said to be an ordinary differential equation. In the sec-
ond case, the derivatives aie partial derivatives, and the equatlon is called a partial
differential equation.
All the differential equations discussed in the pr ecedmg two sections are ordinar y

differ entlal equatlons Another example of an 01dma1y d1ffe1 entlal equation is

2 d _
"%’) __Rﬂ+ QW =F0, (1)
“for the charge Q(t) on a capac1tor in a circuit with capacitance C, resistance R, and
inductance L; this equation is derived in Section 3.7. Typical examples of partial
differential equatlons are the heat conduction equatlon

23 u(x,:t) du(x, t)
o
ol a*

L

©)

~ and the wave equation

a.ZQZu();,t) - azu{x,r'). : (3)
o G2

Here,&? and a? are certain physical constants. Note that in both Eqs. (2) and (3) the
dependent variable u depends on the two independent variables x and ¢. The heat
conduction equation describes the conduction of heat in a solid body, and the wave
equation arises in a variety of problems involving wave motion in solids or fluids.

" Systems of Differential Equations. Another classification of differential equations de-
pends on the number of unknown functions that are involved. If there is a single
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function to be determined, then one equation is sufficient. However, if there are two
or more unknown functions, then a system of equations is required. For example, the
Lotka-Volterra, or predator—prey, equations are important in ecological modeling.

They have the form . _
: dx/dt = ax — oxy (@) -~
dy/dt = -—cy-l-yry,
where x(¢) and y(¢) are the respective-populations of the prey and predator species.

The constants a,a, ¢, and y are based on empirical observations and depend on the

partictilar species being studied. Systems of equations are discussed in Chapters 7

and 9; in particular, the Lotka-Volterra equations are examined in Section 9.5. In

some areas of application itis not unusual to encounter very large systems containing
hundreds, or even many thousands, of equations. '

Order. The order of a differential equation is the order of the highest derivative that
appears in the equation. The equations in the pr ecedmg sections are all first order
equations, whereas Eq. (1) is a second order equatlon Equations (2) and (3) are
second order pa1t1a1 dlffel ential equatxons More genel ally, the equation

Flt,ult)u'(t), .. .,u"™0))}=0 (5)

is an ordinary differential equation of the nth order. Equation (5) expresses a relation
between the independent variable ¢ and the values of ‘the function u and its first n
derivatives ', u”, ..., u® . Ttisconvenientand customary in differential equations to
write y for u(f), with y',y”,...,y® standing for u'(t), u"(t),. . . ,u®(t). Thus Eq. (5) is
writtenas ' o

Fityy'. oy =0, (©)
For example, . R
. . y//l+2el ”+y}' — t4 Lo )

is a third order dlffel ential equatlon fory = u(r). Occasxonally, other letters will be
used instead of ¢ and y for the independent and dependent variables; the meaning
should be clear from the context.

We assume that it is always possible to solve a given 01d1na1y dlffel ential equation
for the highest denvatlve obtamlng

(n) s f(l }’ )’ y - ”.,"y(n;i'?). Ll (8)

This is mainly to avoid the ambiguity that may arise because a single equation of
the form (6) may correspond to several equatlons of the form (8) For example, the
equation

Y +ty +4y = 0 )

leads to the two equations

- ;—t 12';.16 e '..-.-~t—-\/t2-16
Yl:w or ),/x_w, (10)

Linear and Nonlinear Equations. A crucial classification of differential equations is
whether they are linear or nonlinear. The ordinary differential equation

F’(f, }'-,}'l, . ,)’(”)) =0
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is said to be linear if F is a linear function of the variables y,y’,...,y"); a similar
definition applies to partial differential equatlons Thus the gener al lmea1 ordinary
differential equatlon of order nis - :

_ a.(t)y(") + ax(t)y(””l) + a,,'(t)y = g(t)... (11)

Most of the equations you have seen thus far in this book are linear; examples are
the equations in Sections 1.1 and 1.2 describing the falling object and the field mouse
population. Similarly,in this section, Eq. (1) is a linear ordinary differential equation
and Egs. (2) and (3) are linear partial differential equations. An.equation that is not
of the form (11) is a nonlinear'équation. Equation (7) is nonlinear because of the
term yy". Similarly, each equatxon in the system 4)is nonlmeal because of the te1ms
that involve the product xy. '

A simple physical problem: that -leads to a nonlinear differential equation is the
oscillating pendulum:. The angle 6 that an oscillating pendulum of length L makes
with the veltlcal direction (see Figure 1.3.1) satlsﬁes the equatlon

' 2 _ ' :
f%—? + i sing=0, (12)
whose derivation is outlmed in Problems 29 through 31. The presence of the term
involving sin § makes Eq. (12) nonlinear.

mg

FIGURE 1.3.1  Anoscillating pendulum;

- The mathematical theory and methods for solving linear equations are highly
developed. In contrast, for nonlinear equations the theory is more complicated, and
methods of solution are less satisfactory: In view of this, it is fortunate that many
significant problems lead to linear ordinary differential equations or can be approx-
imated by linear equations. For-example, for the pendulum, if the angle 6 is small,
then sin 6 = 6 and Eq. (12) can be appr 0x1mated by the 1mea1 equatlon

(129 g o o s

dr? + l,e . 0. Pl ' (13)

This process of approximating a nonlinearequation by a linear one is called lineariza-

tion; it is an extremely valuable way to'deal with nonlinear equations. Nevertheless,

there are many physical phenomena that simply cannot be represented adequately

- by linear equatlons To study these phenomena 1t is essentlal to deal with nonlinear
‘equations. : :
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In an elementary text it is natural to emphasize the simpler and more straight-
forward parts of the subject. Therefore, the greater part of this book is devoted to
linear equations and various methods for solving them. However, Chapters 8 and 9,
as well as parts of Chapter 2, are concerned with nonlinear equations. Whenever it
is appropriate, we point out why nonlinear equations are, in general, more difficult
and why many of the techniques that are useful in solving linear equations cannot
be applied to nonlinear equations.

Solutions. A solution of the ordinary differential equation (8) on the interval
a < t < Bis a function ¢ such that ¢',¢", ..., ¢") exist and satisfy

oW =flt,d@), ' ©),..., " D)) (14)

for every ¢ in @ <t < B. Unless stated otherwise, we assume that the function f
of Eq. (8) is a real-valued function, and we are interested in obtaining real-valued
solutions y = ¢ (¢).

Recall that in Section 1.2 we found solutions of certain equations by a process of
direct integration. For instance, we found that the equation

dp .
— =0.5p — 450 ' 15
o p (15)
has the solution

p =900 + ce'’?, (16)

where c is an arbitrary constant. It is of ten not so easy to find solutions of differential
equations. However, if you find a function that you think may be a solution of a given
equation, it is usually relatively easy to determine whether the function is actually a
solution simply by substituting the function into the equation. For example, in this
way it is easy to show that the function y;(f) = cost is a solution of

y' +y=0 (17)

forallt. To confirm this, observe that y; () = —sintand y{ () = —cos t; then it follows
that y§(r) + y1(t) = 0. In the same way you can easily show that y,(¢) = sint is also
a solution of Eq. (17). Of course, this does not constitute a satisfactory way to solve
most differential equations, because there are far too many possible functions for you
to have a good chance of finding the correct one by a random choice. Nevertheless,
you should realize that you can verify whether any proposed solution is correct by
substituting it into the differential equation. This can be a very useful check; it is one
that you should make a habit of considering. 4 '

Some Important Questions. Although for the equations (15) and (17) we are able to
verify that certain simple functions are solutions, in general we do not have such
solutions readily available. Thus a fundamental question is the following: Does an
equation of the form (8) always have a solution? The answer is “No.” Merely writing
down an equation of the form (8) does not necessarily mean that there is a function
y = ¢(¢) that satisfies it. So, how can we tell whether some particular equation has a
solution?This is the question of existence of a solution, and it is answered by theorems:
stating that under certain restrictions on the function f in Eq. (8), the equation always
has solutions. This is not a purely mathematical concern for at least two reasons.
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If a problem has no solution; we would prefer to know that fact before investing
time and effort in a vain attempt to:solve the problem. Further,if a sensible physical
problem: is modeled mathematically as' a differential equation, then the equation
-should have a-solution. If it does not, theén presumably thereis something wrong with
the formulation. In this sense an engineer or scientist has some check on the validity
of the mathematical model; S

If we assume that-a given differ entlal equatlon has at least one solution, then
we may need to consider how many solutions it has,and what additional conditions
must be specified tosingle out a par ticularsolution. Thisisthe question of uniqueness.
In general, solutions. of differential equations contain one or more arbitrary con-
stants.of integration, as does. the.solution (16)-of Eq. (15). Equation (16) represents
an infinity of functions corresponding to the. infinity of possible choices of the con-
stant c. As we saw in-Section 1.2; if pis:specified.at some time ¢, this condition will
determine a value for ¢; even so, we have not yet ruled out the possibility that there
may be other solutions-of Eq: (15) that also have the prescribed value of p at the
prescribed time t. As in the question of existence of solutions,theissue of uniqueness
has practical as well as theoretical implications. If we are fortunate enough to find a
solution of a given problem,and if we know that the problem has a unique solution,
then we can be sure that we have completely solved the problem. If there may be
other solutions, then perhaps we should continue to search for them.

A third important.question is: Given a differential equation of the form (8), can
we actually determine a solution, and if'so, how? Note that if we find a solution of
the given equation, we have at the same time answered the question of the exis-
tence of a solution. However; without knowledge of existence theory we might,
for example, use a: computer to find a numerical appr oximation to a “solution”
that-does not exist. On the other ‘hand, even though we may know that a solution

~ exists, it may be that the solution is not expressible in terms of the usual elemen-
tary functions—polynomial, trigonometric, exponential, logarithmic, and hyperbolic
functions. Unfortunately, this-is the situation for most differential equations. Thus, -
we discuss both elementary methods that can be. used to obtain exact solutions of
certain relatively simple problems; and also methods of a more general nature that
can be.used to find:approximations to solutions of more difficult problems.

Computer Use in Differential Equations. A computer can be an extremely valuable tool
in the study of differential equations. For many years computers have been used
to execute numerical algorithms, such as those described in Chapter 8, to construct
_numerical approximations to solutions of differential equations. These algor 1thms
have been refined to an extremely high level of generality and efﬁmency A fewlines
of computer code, written in a high-level programminglanguage and executed (often
within a fewseconds) on a relatively inexpensive computer, suffice to approximate to
ahigh degree of accuracy the solutions of a wide range of differential equations. More
sophisticated routines are also readily available. These routines combine the ability
to handleverylarge and complicated systems withnumerous diagnostic features that
alert the user to possible problems'as they are encountered.
The usual output from a numerical algorithm s a table of numbers, listing selected
values of the independent variable and the corresponding values of the dependent
- variable. With appropriate software it is easy to-display the solution of a differen-
tial equation graphically, whether the solution has been obtained numerically or as
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the result of an analytical procedure of some kind. Such a graphical display is often
much more illuminatingand helpfulinunderstanding and interpreting the solution.of .
a differential equation than a table of numbers or a complicated analytical formula.
There are on the market several well-crafted and relatively inexpensive special-
purpose software packages for the graphical investigation of differential equations:
The widespread availability of personal computers has brought powerful computa- -

tional and graphical capability. within the reach of individual students. You should. -

consider, in the light of your own circumstances, how best to take advantage of the
available computing resources. You will surely find.it enlightening to do so. . 3
Another aspect of computer use that is very relevant to the study of differential -
equations is the availability of extremely powerful and general software packages
that can performa wide variety of mathematical operations. Among these are Maple,
Mathematica,and MATLAB, each of which can be used on various kinds of personal
computers or workstations. All three of these packages can execlteextensive numer--
ical computationsand have versatile graphical facilities. Maple and Mathematica also' '

" have very extensive analytical capabilities. For example, they can perform the ana-

Iytical steps involved in solving many differential equations, often in response to a
single command. Anyone who expects to deal with differential equations in more
than a superficial way should become familiar with at least one of these p1 oducts and:
explore the ways in which it can be used. .

For you, the student, these computing resources have aneff ect on how youshould
study differential equations. To become confident in using differential equations; it

is essential to understand how the solution methods work, and this understanding is ..

achieved,in part,; by working out a sufficient number of examples in detail.. However;
eventually you should plan to delegate as many as:-possible of the routine (often
repetitive) details to a computer, while you focus on the proper formulation-of the
problem and on the interpretation of the solution. Qur viewpointis that you should
always try to use the best methods and tools available for each task. In particular,
you should strive to combine numerical, graphical; and analytical methods so as to: -
attain maximum understanding of the behavior of the solution and of the underlying
process that the problem models. You should alsoremember that some tasks can best .-
be done with pencil and paper, while others require:a‘calculator or computel Good g
]udgment is often needed in selecting an effective combmatlon o

vz

_PROBLEMS

In each of Problems 1 through 6,determine the 01de1 of the given differential equauon also__ .

state whether the equation is linear or nonlinear. . _

d""y dy ' : dy.

1. ?g-_—z«+t—-«-}-2}u—smt _2.(1+y2)“(—1;ﬁ+td

d'y &y dzy dy R dy :
— 4+ = = 1 : ) v =0

wtaEtaE tw +y ' dt +

2 i : 3 dy
fif“i-sm(t-ky)*-smr o 6.d +t-+(00521))"'f*'

' dt” dt
In each of Problems 7 through 14, verify that each glven functlon is a solutlon of the dlffer~
ential equation. :

Ty —y=0  y)=e, ,}'2(t)=cosh_t

+y=e

3.

5.
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8y 42y =3y=0 yW=e yO=¢

9.ty —y=1% y=3t+1 '

10. y" +4y" +3y =1, yn(0) = /3, yz(t) =e'+1/3

1L 2%y +3y =y =0, 1> 0" -y () =12, py=rt
12. 2y" +5ty +4y=0, >0 y,(r)='z-2 ya(t) =t 2In¢
13. y" +y=sect, 0<t <.JT/2' = (cos?) lncost +tsmt

i
14. y —2y=1; y:e'zf(f’”ds+e
. [

- Ineach of Problems 15 through 18,.determme the values of r for which the given differential
equation has solutions of the form y = e”. :

15. y' +2y=0 o . 16y —y=0

1. y"+y —6y=0. v : 18. y" =3y"+2y'=0

In each of Problems 19 and 20; determine the values of r for whrch the grven dlfferentlal
equation has solutions of the form y = ¢" for¢ > 0. '

19 2y" +4ty' +2y =0 -~ - 20 rzy”'—4ty +4y=0

In each of Problems 21 through 24 determme the order of the given partral differential equa-
tion; also state whether the equatlon 1s linear or nonlinear. Partial derivatives are denoted by

" subscripts. _ .
21wy Uy Uy = 0. _ o o _ 22. Uy + Ly +uie + uiy +u=0
23, Uyrer +2uam + Uyyyy = 0 : . 24wty =14 uy

In each of Problems 25 through 28 verlfy that each- grven function is:a solutlon of the given

partial differential equation. -

25. g + iy =0, uix,y)=cosxcoshy, uz(x,y):.ln(xz' +y2)

26. rxzun =u; - w(x) = é‘“z"sin_}é,' wy(x, 1) = e~ sinAx, A areal constant

27. @ue = uy; ll'r(x )= sinAxsin Aat, uz(x,t) = sin(x — at) A a real constant

28. iy = Uy} u=(n/H)!% AR >0 '

29. Follow the steps indicated here to derlve the equatlon of motion of a pendulum, Eq. (12)
in the text. Assume that the rod is ugrd and weightless, that the mass isa pomt mass, and
that there is no friction or dr ag anywhere in the system.

(a) Assume that the mass isin an arbltrary displaced position, indicated by the angle 6.
Draw a free-body dragram showmg the forces acting on the mass.

(b) Apply Newton’s law of motlon in the direction tangentlal to the circular arc on which
the mass moves. Then the terisile force in the rod does not enter ‘the equation. Observe
‘that you need to find the component of the gravrtatlonal force in the tangentlal direc-
tion. Observe also that the linear-acceleration, as opposed to the angular accele1atron is
Ld?6/dt? where L is the length of the rod.- :

(c) Simplify the result from part’ (b) to: obtam Eq. (12) in the text.:

30. Another way to derive the pendulum equatlon (12) 1s based on the principle of
conservation of energy.
(a) Show that the kinetic energy T ofthe pendulum in motlon is

1 L[ d6
.2nL (lt)

_(b) Show that the potentlal energy V of the pendulum, relative toiits rest position, is

V= mgL(l - cosé))
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(c) By the principle of conservation of energy, the total energy £ = T + V is constant.
Calculate dE/dt, set it equal to zero, and show that the resulting equation reduces to
Eq. (12).

31. A third derivation of the pendulum equation depends on the principle of angular
momentum: The rate of change of angular momentum about any point is equal to the
net external moment about the same point.

(a) Show that the angula1 momentum M, or moment of momentum, about the point of
support is given by M = mL?d6/dt.

(b) SetdM /dt equal to the moment of the gravitational force,and show that the resulting
equation reduces to Eq. (12). Note that positive moments are counterclockwise.

1.4 Historél Remar'

Without knowing something about differential equations and methods of solving
them, it is difficult to appreciate the history of this important branch of mathematics.
Further, the development of differential equations is intimately interwoven with the
general development of mathematics and cannot be separated from it. Nevertheless,
to provide some historical perspective, we indicate here some of the major trends in
the history of the subject and identify the most prominent early contributors. Other
historical information is contained in footnotes scattered throughout the book and
in the references listed at the end of the chapter.

The subject of differential equations originated in the study of calculus by Isaac
Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646-1716) in the seventeenth
century. Newton grew up in the English countryside, was educated at Trinity Col-
lege, Cambridge,and became Lucasian Professor of Mathematics there in 1669. His
epochal discoveries of calculus and of the fundamental laws of mechanics date from
1665. They were circulated privately among his friends, but Newton was extremely
sensitive to criticism and did not begin to publish his results until 1687 with the
appearance..of his most famous book, Philosophiae Naturalis Principia Mathemat-
ica. Although Newton did relatively little work in differential equations as such, his
development of the calculus and elucidation of the basic principles of mechanics pro-
vided a basis for their applications in the eighteenth century, most notably by Euler.
Newton classified. first order differential equations according to the three forms
dyfdx = f(x), dy/dx = f(y), and dy/dx = f(x,y). For the latter equation he devel-
oped a method of solution using infinite series when f(x,y) is a polynomial in x
and y. Newton’s active research in mathematics ended in the early 1690s, except for
the solution of occasional “challenge problems” and the revision and publication of
results obtained much earlier. He was appointed Warden of the British Mint in 1696
and resigned his professorship a few years later. He was knighted in 1705 and, upon
his death, was buried in Westminster Abbey.

Leibniz was born in Leipzig and completed his doctorate in philosophy at the age
of 20 at the University of Altdorf. Throughout his life he engaged in scholarly work in
several different fields. He was mainly self-taught in mathematics, since his interest
in this subject developed when he was in his twenties. Leibniz arrived at the funda-
mental results of calculus independently, although a little later than Newton, but was
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the first to publish them, in 1684. Leibniz was very conscious of the power of good
mathematical notation and was responsible for the notation dy/dx for the deriva-
tive and for the integral sign. He discovered the method of separation of variables
(Section 2.2)-in 1691, the reduction of homogeneous equations to separable ones
(Section 2.2, Problem 30) in 1691;.and the procedure for solving first order linear
" -equations (Section 2.1) in 1694. He spent his life as ambassador and adviser to sev-
eral German royal families, which permitted him to travel widely and to carry on an
-extensive correspondence with-othermathematicians, especially the Bernoulli broth-
ers. In the course of this correspondence. many problems in:differential equations
were solved during the latter-part of the seventeenth century. =

The brothers Jakob (1654~1705) and Johann (1667-1748). Bernoulli- of Basel did
much to develop methods.of solving differential equations and to extend the range
of their applications. Jakob became professor of mathematics at Basel in 1687, and
Johann was appointed to the same position upon his brother’s death in.1703. Both
men were quarrelsome,jealous,and frequently embroiled in-disputes,especially with
each other. Nevertheless, both alsomade significant contributions to several areas of
mathematics, Withtheaid.of calculus,they solved anumber of problems in mechanics
by formulating them as differential equations. For example, Jakob Bernoulli solved
the differential equation y* = [a/(b%y — a*)1"/? in 1690 and, in the same paper, first
used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able
to solve the equation dy/dx'= y/ax. One problem which both brothers solved, and
which led to much friction between them, was the brachistochrone problem (see
Problem 32 of Section 2.3). The brachistochrone problem was also solved by Leibniz,
Newton, and the Marquis de L’Hdpital. Tt is said, perhaps apocryphally, that Newton
learned of the problemlate in the afternoon of a tiring day at the Mint and solved it
that evening after dinner. He published the solution anonymously, but upon seeing
it, Johann Bernouilli exclaimed, “Ah, I know. the lion by his paw.”

Daniel Bernoulli (1700-1782),son of Johann, migrated to St. Petersburg as a young

~man to.join the newly established: St. Petersburg Academy. but returned to Basel
in 1733 as professor of botany and, later; of physics. His interests were primarily in
partial differential equations and their applications. For instance, it is his name that
is associated with the Bernoulli equation in fluid mechanics: He was also the first
to encounter the functions that a centuly later became known as. Bessel functions
(Section'5.7).-: :

The greatest: mathematlclan of the elghteenth century, Leonhald Euler (1707~
1783), grew up near Basel-and was a student of Johann Bernoulli. He followed his
friend Daniel Bernoulli to St. Petersburg in 1727. For the remainder of his life he
was associated with the St. Petersburg Academy (1727-1741 and 1766-1783) and
the BerlinAcademy (1741-1766): Euler was the most prolific mathematician of all
time; his collected works fill. more than 70 large volumes. His interests ranged over
all areas of mathematics and many-fields of application. Even though he was blind
duringthe last 17 years of his life, his work continued undiminished until the very day

~ of his death. Of particular interest here is his formulation of problems in mechanics
in mathematical language and his development of methods of solving these mathe-
matical problems. Lagrange said of Euler’s work in mechanics, “The first great work

. in which analysis is applied to the science of movement.” Among other things, Euler
. identified the condition for exactness of first order differential equations (Section
. 2.6) in 1734-35, developed the theory of integrating factors (Section 2.6) in the same
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paper, and gave the general solution of homogeneous linear equations with constant
coefficients (Sections 3.1, 3.3, 3.4, and 4.2) in-1743. He extended the latter results to
‘nonhomogeneous equations in 1750-51. Beginning about 1750; Euler made frequent
use of power series (Chapter 5) in solving differential equations. He also proposed
a numerical procedure (Sections 2.7 and 8.1) in 1768-69, made important contribu-
tions in partial differential equations, and gave the first systematlc treatment of the

- calculus of variations:

Joseph-Louis Lagrange (1736-1813) became pr ofessm of mathematlcs in his native
Turin at the age of 19. He succeeded Euler in the chair of mathematics at the Berlin
Academy in-1766:and moved on to the ParisAcademy in 1787. He'is most famous for
‘his monumental work Mécanique analytique, published in 1788, an elegant and com-
prehensivetreatise.of Newtonian mechanics, With respect toelementary differential

. equations, Lagrange showed in 176265 that the general'solution of an nth order
linear homogeneous differential equation is a linear-combination of n independent

- solutions (Sections 3.2 and 4.1). Later, in 177475, he gave a complete development
of the method of variation of parameters (Sections 3.6-and 4.4). Lagrange is also
known for fundamental work in paltlal differential equatlons and the calculus of
variations.

Pierre-Simon de Laplace (1749-1827) lived in Nor mandy as a boy but came to
Paris in 1768 and quickly made his mark in-scientific circles; winning election to the
Académie des Sciences in 1773..He was preeminent in the field of celestial mechanics;
his greatest work, 7raité-de mécanique céleste, was published in five volumes between
1799 and: 1825: Laplace’s equation is fundamentalin many branches of mathematical
physics;and Laplace studiedit extensively inconnection withgravitational attraction.
The Laplace transform (Chapter 6) is also named for him, although its usefulness in
solving differential equations was not recognized until much later.

By the end of the eighteenth century many €lementary methods of solving ordinary
differential equations had been-discovered. In the nineteenth.century interest turned
'more toward the investigation of theoretical questions:of-existence and uniqueness
and to:the development of less elementary methods such as those based on power
series expansions (see Chapter 5). These- methods find their natural setting in the com-
plex plane. Consequently, they benefitted from,‘and to some extent stimulated, the
more of less simultaneous development of the theory-of complex analytic functions.
Partial differential equations also began to be studied intensively,as their crucialrole
inmathematical physics became clear. In this connection a number of functions, aris-
ing as solutions of certain ordinary differential equations, occurred repeatedly and
were studied exhaustively. Known collectively-as higher transcendental functions,

" many of them are associated with the names of ‘mathematicians, including Bessel,
- Legendre, Hermite, Chebyshev, and Hankel, among others.

The numerous differential equations that resisted solution by analytical means
led to'the. investigation of methods. of numerical approximation (see Chapter 8).
By 1900 fairly effective numerical integration methods had been devised, but their
implementation was-severely restricted by the need to execute the computations by

: hand or with very primitive computing equipment. In the last 60 years the develop-
mentof increasingly powerful and versatile computers hasvastly enlarged the range
of problems that can be investigated effectively by numerical methods. Extremely

- refined and robust numerical integrators were developed during the same period
and are readily available. Versions appropriate for peirsonal computers have brought
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the ability to solve a great many significant pr oblems within the reach of individual
students.

Another characteristic of differential equations in the twentieth century was the
creation of geometrical or topological methods, especially for nonlinear equations.
The goal is to undeérstand at least the qualitative behavior of solutions from a
geometrical, as well as from an analytical, point of view. If more detailed informa-
tion is needed, it can usually be obtained by using numerical approximations. An
introduction to geometrical methods appears in Chapter 9.

'Within the past few years these two trends have come together. Computers, and
especially computer graphics, have given a new impetus to the study of systems of
nonlinear differential equations. Unexpected phenomena (Section 9.8), such as
strange attractors, chaos, and fractals, have been discovered, are being intensively
studied, and are leading to important new insights in a variety of applications.
Although it is an old subject about which much is known, the study of differen-
tial equations in the twenty-first century remains a fertile source of fascinating and
important unsolved problems.

Computer software for differential equations changes too fast for particulars to be given in a book such
.-as this. A Google search for Maple, Mathematica, Sage,or MATLAB is a good way to begin if you need

information about one of these computer algebra and numerical systems.

There are many instructional books on.computer algebra systems, such as the following:

Cheung, C-K,, Keough, G. E,, Gross,R. H., and Landraitis, C., Getting Started with Mathematica (3rd ed.)
(New York: Wiley, 2009).

Meade, D. B.,,May, M., Cheung, C.-K., and Keough, G. E., Getfing Started w:!h Maple (3rd ed.) (New York:
Wiley,2009).

For furtherreading in thehistdry of mathematics, eee books such as those listed below:
Boyer, C. B.,and Merzbach, U. C,A History of Mathematics (2nd ed.) (New York: Wiley,1989).

Kline, M., Mathematical Thoughr f) om ‘Ancient to Modern Times (3 vols.) (New York: Oxford University
Press, 1990).

A useful historical appendix on the ear.ly development of differential equations appears in
Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 1927; New York: Dover, 1956).

Encyclopedic sources of information about the lives and achievements of mathematicians ‘of the
past are B : L

Gillespie, C. C, ed., Dictionary of Scientific Biography (15 vols.) (New York: Seribne_r’s, 1971).

Koertge, N, ed., New Dictionary of Scientific Biography (8 vols.) (New York: Scribner's,2007):

Koertge, N., ed., Complete Dictionaiy of Scientific Biography (New York: Scribner’s,2007 {e-book]}).
Much historical information can be found on the Internet. One excellent site is the MacTutor History

of Mathematics archive
http://www-history.mcs.st-and.ac.uk/history/

created by John J. O’Connor and Edmund F. Robenson Department of Mathematics and Statistics,
University of St. Andrews, Scotland.





