Lesson 35

Basic Power Functions:

- $f(x) = bx^a$
 - the base x is a variable and the exponent a is a constant, b is a non-zero constant coefficient
- Examples:
 - $\circ f(x) = x^2$
 - $\circ g(x) = 3x^{\frac{1}{2}}$
 - $h(x) = \frac{1}{2}x^{-1}$
- there are no restrictions on the exponent *a*, but there could be restrictions the base *x* depending on the value of exponent
 - for the function $g(x) = x^{\frac{1}{2}}$, restrictions: $x \ge 0$
 - for the function $h(x) = x^{-1}$, restrictions: x ≠ 0

Basic Exponential Functions:

- $f(x) = ba^x$
 - the exponent *x* is a variable and base *a* is a constant within the guidelines below, *b* is a non-zero constant
- there are no restrictions on the exponent *x*, but there are restrictions on the base *a*
 - *a* cannot be negative $(a \ge 0)$ because *x* could be a fraction $\left(x = \frac{1}{2}\right)$ for example, $(-2)^{1/2}$ is not defined
 - *a* cannot be zero ($a \neq 0$) because *x* could be negative (x = -1) 0^{-1} is not defined
 - a cannot be one (a ≠ 1) because f(x) = a^x would not be 1 1
 f(x) = 1^x is the same as f(x) = 1, a horizontal line

An exponential function $f(x) = a^x$ must have a positive base other than 1 $(a > 0 \text{ and } a \neq 1)$.

Example 1: Find an exponential function of the form $f(x) = b \cdot a^x$, given the following information, then find the domain and range of each function.

a. passes through the points P(0, 1) and Q(-3, 8)

b. passes through the points P(0, -2) and Q(1, -4)

c. y-intercept is 6; passes through the point $P\left(2,\frac{3}{32}\right)$

Because the exponent x is unrestricted, the domain of an exponential function is all real numbers $(-\infty, \infty)$. The range however is restricted; as long as a > 0, a^x will always produce positive outputs, so the range of the exponential function $f(x) = a^x$ is only positive numbers $(0, \infty)$. The range could change if an exponential function is transformed (shifted and/or reflected vertically).

Example 2: Sketch the graph of $f(x) = 2^x$, then find the following:

<u>Inputs</u>	<u>Outputs</u>							
x	$f(x) = 2^x$							
$\chi \to -\infty$								
-4								
-3								
-2								
-1								
0								
1								
2								
3		Domain:						
4								
$\chi \to \infty$		Range:						

f(x) = 0 when x =

f(x) > 0:

f(x) < 0:

Increasing:

f(0) =

x-intercepts:

y-intercepts:

g:

Decreasing:

f(x) is even/odd/neither: f(-1) = f(1) =

Example 2 $\frac{1}{2}$: Sketch the graph of $f(x) = \left(\frac{1}{2}\right)^x$, then find the following:

	· · · · · · · · · · · · · · · · · · ·								
<u>Inputs</u>	<u>Outputs</u>								
x	$f(x) = \left(\frac{1}{2}\right)^x$								
$\chi \to -\infty$	(2)								
-4									
-3									
-2									
-1									
0									
1									
2									
3		Domain:							
4									
$\chi \to \infty$		Range							

f(x) = 0 when x =

f(x) > 0:

f(x) < 0:

Increasing:

Range:

x-intercepts:

f(0) =

y-intercepts:

Decreasing:

f(x) is even/odd/neither: f(-1) =f(1) =

Asymptotes: Horizontal Asymptote:

- a horizontal line (y = #) that the graph of a function approaches when the inputs are large positive numbers $(x \to \infty)$ or large negative numbers $(x \to -\infty)$
 - in the case of $f(x) = 2^x$, as the inputs get smaller and smaller $(x \to -\infty)$, the outputs get closer and closer to zero $(f(x) \to 0)$, so the graph has a horizontal asymptote at y = 0
 - the graph of every exponential function will have a horizontal asymptote
- in WebAssign, horizontal asymptotes will not be dotted lines when they lie on the *x*-axis, but only when they are above or below the *x*axis

Example 3: Re-write each of the following functions in terms of $f(x) = 2^x$, then match the transformation with the appropriate graph on page 6.

- a. $g(x) = -2^{x}$ b. $h(x) = 2^{-x}$ c. $j(x) = 2^{x-3}$ d. $k(x) = 2^{x} - 3$
- e. $m(x) = 3(2^x)$

f. $n(x) = 2^{3x}$

When solving problems like this on the homework, you can either use transformations (like I did) or you can make new input/output tables for each new function to sketch/identify the graphs. Transformations will most likely be quicker, but it is your choice.

Natural Exponential Functions:

- $f(x) = e^x$, where the exponent x is a variable and base e is the number 2.71828...
- the base *e* is <u>NOT</u> a variable, it is simply a number (like π or *i*)
- the domain is still unrestricted $(-\infty, \infty)$ and the range is still only positive numbers $(0, \infty)$

Example 4: Re-write each of the following functions below in terms of $f(x) = e^x$, then match the transformation with the appropriate graph on page 8.

<u>Inputs</u>	<u>Outputs</u>		f(x	:) = e	x		
x	$f(x) = e^x$						
$x \to -\infty$	$f(x) \to 0$						
-2	$\frac{1}{e^2} \approx 0.14$						<u> </u>
-1	$\frac{1}{e} \approx 0.37$						
0	1						
1	$e \approx 2.72$						
2	$e^2 \approx 7.39$						
$x \to \infty$	$f(x) \to \infty$				-	-	
a. $g(x) =$	<i>e</i> ^{-<i>x</i>}	b. <i>h</i>	(<i>x</i>)	= -	- <i>e</i> ^x		

c. $j(x) = e^{x+2}$

d. $k(x) = e^x + 2$

f. $n(x) = e^{2x}$ e. $m(x) = 2e^x$

D.

F.

Again, when solving problems like this on the homework you can use any method you like to sketch/identify the graphs of the functions. All the transformations discussed in Lessons 22 & 23 hold true for exponential functions (shifting, stretching, compressing, and reflecting). The only way for an exponential function to be equal to zero is if it is transformed in a way that it crosses the *x*-axis (shifted and/or reflected vertically).

if
$$f(x) = 2^x$$
, then $f(x) \neq 0$
if $g(x) = 2^x - 4$, then $g(x) = 0$ when $x = 2$

Example 5: Find the zeros (numbers where *x*-intercepts are located) of the following functions.

a.
$$g(x) = x2^{x} + 2^{x}$$

b. $h(x) = -x^{2}2^{-x} + 2x2^{-x}$

$$g(x) = 0$$
 when $x =$
 $h(x) = 0$ when $x =$
 $h(x) = x^{3}(4e^{4x}) + 3x^{2}e^{4x}$
 $h(x) = x^{2}e^{2x} + 5xe^{2x} + 6e^{2x}$

$$j(x) = 0$$
 when $x = k(x) = 0$ when $x =$

Referring back to the exponential graphs from Examples 2, 3, & 4, notice that all the graphs of exponential functions are either increasing or decreasing; there are no turning points. Based on the Theorem on Increasing/Decreasing Functions from Lesson 34, this means that exponential functions are one-to-one.

Theorem on Exponential Functions:

- exponential functions are one-to-one, so if a base to power is equal to the same base to another power, the powers must be the same

• if
$$2^x = 2^y$$
, then $x = y$

- \circ if $2^x = 8^y$, then x = 3y because $2^x = 2^{3y}$
- if two exponential expressions are equal, and the bases are same, the exponents must be the equal

Example 6: Solve each of the following equations by making the bases the same and simplifying, then setting the exponents equal to each other.

a.
$$7^{x+6} = 7^{3x-4}$$
 b. $e^{(x^2)} = e^{7x-12}$

c.
$$2^{2x-6} = 8^{4-x}$$
 d. $27^{x-1} = 9^{2x-3}$

One application of exponential functions is compound interest, which is when interest is calculated on the total value of a sum, not just on the principal. We will look at two ways to calculate compound interest; n times per year or continuously.

Compound Interest Formulas:

- when interest is compounded n times per year, we use the formula
 - $A = P\left(1 + \frac{r}{n}\right)^{nt}$, where *n* is the number of compounding periods
- when interest is compounded continuously, we use the formula $A = Pe^{rt}$
- in both cases:
 - \circ A is the accumulated value of the investment
 - *P* is the principal (the original amount invested)
 - \circ r is the annual interest rate as a decimal
 - \circ t is the number years the principal is invested
- these formulas will be provided on the Final Exam, if needed

Example 7: If \$1000 is invested at a rate of 7% per year compounded monthly, find value of the investment at each given time and round to the nearest cent.

a) 1 month

b. 6 months

c. 1 year

d. 20 years

Example 8: Parents of a newborn baby are given a gift of \$20,000 and will choose between two options to invest for their child's college fund. Option 1 is to invest the gift in a fund that pays an average annual interest rate of 8% compounded semiannually; option 2 is to invest the gift in a fund that pays an average annual interest rate of 7.75% compounded continuously. Assuming each investment has a term of 18 years, which is the better option for the parents?

What if the rates are the same?

Example 9: A proposed alternative to the current Social Security system is to set-up an account with \$10,000 for every child born in the United States to parents who are U.S. citizens. The account would be payable on the newborns 70^{th} birthday. Calculate the amount of each account if the average annual interest is 5% compounded:

a. Annually b. Quarterly c. Continuously