Student's Name:	
Student's ID Number:	
MA	16010 Sections:
	9:50-10:50am Section 0002
	11:00am-noon Section 0001

Instructions:

- 1. Do NOT turn the page until told to do so.
- 2. Fill in your name and student ID in the space provided above.
- 3. On the scantron, fill in your name, section number, student ID. Leave the test/quiz number blank. Sign your name.
- 4. There are 12 problems and a total of 7 pages (including this cover page). The maximum possible score for this exam is 100, and each problem is worth the same points.
- 5. You can use the available space below a question or at the back of each page for your work. Turn in BOTH the scantron and the exam when you leave. Note: you will be graded ONLY based on your scantron answer sheet.
- 6. Only a one-line display scientific calculator is allowed. NO other electronic devices are allowed. No books or notes are allowed.
- 7. You will have 60 minutes to complete the exam.
- 8. Keep your eyes on your own exam please. Try to cover your bubbled-in scant-ron answers.
- 9. Good luck!

$\underline{\rm MA~16010}$ - Exam 2

- 1. If $h(t) = \sin(3t) + \cos(3t)$, find $h^{(3)}(t)$.
 - A. $\sin(3t) \cos(3t)$
 - B. $\sin(3t) + \cos(3t)$
 - C. $27\sin(3t) 27\cos(3t)$
 - D. $27\sin(3t) + 27\cos(3t)$
 - E. $-27\sin(3t) + 27\cos(3t)$

- 2. Given $f(x) = \frac{2(3-x^2)}{\sqrt{3x^2+1}}$. Find f'(1).

 - A. $-\frac{7}{2}$ B. $-\frac{9}{4}$ C. $-\frac{1}{2}$ D. $-\frac{13}{6}$ E. $-\frac{3}{4}$

- 3. A spherical balloon is inflated with gas at a rate of 5 cubic centimeters per minute. How fast is the radius of the balloon changing at the instant the radius is 4 centimeters? The volume V of a sphere with a radius r is $V = \frac{4}{3}\pi r^3$.
 - A. $\frac{5}{64\pi}$ centimeters per minute
 - B. $\frac{25}{4\pi}$ centimeters per minute
 - C. $\frac{5}{16\pi}$ centimeters per minute
 - D. $\frac{256\pi}{3}$ centimeters per minute
 - E. $\frac{5}{4\pi}$ centimeters per minute

4. A toy rocket is launched from a platform on earth and flies straight up into the air. Its height after launch is given by:

$$s(t) = t^3 + 3t^2 + 4t + 16,$$

where s is measured in meters, and t is in seconds. Find the velocity when the acceleration is 18 m/s^2 .

- A. 2 m/s
- B. 44 m/s
- C.~16~m/s
- D. 28 m/s
- E. 13 m/s

5. According to a joint study conducted by Oxnard's Environmental Management Department and a state government agency, the concentration of CO in the air due to automobile exhaust t yr from now is given by

$$C(t) = 10(0.2t^2 + 4t + 64)^{\frac{2}{3}}$$

parts per billion. Find the rate at which the level of CO is changing 20 years from now. Round your answer to the nearest integer.

- A. 9 parts per billion per year
- B. 11 parts per billion per year
- C. 13 parts per billion per year
- D. 19 parts per billion per year
- E. 25 parts per billion per year

6. Find $\frac{dy}{dx}$ by implicit differentiation.

$$\ln\left(xy\right) + 2x = e^y$$

- A. $\frac{dy}{dx} = \frac{-2 y}{x e^y}$
- $B. \ \frac{dy}{dx} = \frac{-2y}{1 ye^y}$
- $C. \frac{dy}{dx} = ye^y \frac{y}{x} 2y$
- D. $\frac{dy}{dx} = \frac{1 + 2xy}{xye^y}$
- E. $\frac{dy}{dx} = \frac{-2xy y}{x xye^y}$

7. An airplane flies at an altitude of y = 2 miles towards a point directly over an observer (see figure). The speed of the plane is 500 miles per hour. Find the rate at which the angle of elevation θ is changing when the angle is 60° .

- A. $\frac{75}{4}^{\circ}/\text{hour}$ B. $\frac{225}{8}^{\circ}/\text{hour}$
- C. $\frac{125\sqrt{3}}{2}^{\circ}/\text{hour}$
- D. $\frac{375}{2}^{\circ}/\text{hour}$
- E. $50\sqrt{3}^{\circ}/\text{hour}$

- 8. Find the critical numbers of $y = x^2 e^x$.
 - A. x = -2, 1
 - B. x = 0, 2
 - C. x = 0, 1
 - D. x = -2, 2
 - E. x = -2, 0

9. Given the function

$$f(x) = \frac{8x}{x^2 + 4},$$

and its derivative,

$$f'(x) = \frac{-8x^2 + 32}{(x^2 + 4)^2}.$$

The y values of the absolute maximum and the absolute minimum of f(x) over the closed interval [-1,4] are respectively:

- A. $\frac{8}{5}$ and $-\frac{8}{5}$
- B. $-\frac{8}{5}$ and -2
- C. 2 and $-\frac{8}{5}$
- D. $\frac{8}{5}$ and -2
- E. 2 and -2

10. Find the open interval where g(t) is increasing.

$$g(t) = -\frac{1}{3}t^3 + \frac{3}{2}t^2$$

- A. $(-\infty,0)$
- B. (0,3)
- C. $(3,\infty)$
- D. $(-\infty, 3)$
- E. $(0,\infty)$

11. The graph of the **first derivative** of a function f(x) is shown below. Which of the following statements are true?

- (I) f(x) has 2 critical numbers.
- (II) On $(-\infty, -3)$, f(x) is increasing.
- (III) On (0,3), f(x) is decreasing.
- (IV) A relative maximum occurs at x = 0.
- A. I and II are true.
- B. I and III are true.
- C. I and IV are true.
- D. II and III are true.
- E. III and IV are true.

12. The position function

$$s(t) = t^3 - 2t^2 + t$$

describes the motion of a particle along a line for $t \geq 0$. Choose the correct statement below.

- A. The particle is always moving in a positive direction.
- B. The particle is always moving in a negative direction.
- C. The particle changes from a negative direction to a positive direction at $t = \frac{1}{3}$.
- D. The particle changes from a negative direction to a positive direction at t=1.
- E. The particle changes from a negative direction to a positive direction at t=3.