Homework 28:

18) Domain = $(-\infty, \infty)$, y-intercept at $(0, \frac{1}{4})$, no x-intercepts Symmetry about the y-axis Increasing on $(-\infty, 0)$, Decreasing on $(0, \infty)$, Relative maximum at point $(0, \frac{1}{4})$, Concave upward on $\left(-\infty, -\frac{2}{\sqrt{3}}\right) \cup \left(\frac{2}{\sqrt{3}}, \infty\right)$, Concave downward on $\left(-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$ Points of Inflection at $\left(-\frac{2}{\sqrt{3}}, \frac{3}{16}\right)$ and $\left(\frac{2}{\sqrt{3}}, \frac{3}{16}\right)$ Horizontal Asymptote is the line y = 0 (x-axis) Graph:

20) Domain = $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ *x*-intercept & *y*-intercept: (0, 0) Symmetry about the origin Increasing: $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$, never decreasing No relative extrema Concave upward on $(-\infty, -2) \cup (0, 2)$ Concave downward on $(-2, 0) \cup (2, \infty)$ Point of inflection: (0, 0) Vertical Asymptotes at lines x = -2 & x = 2Horizontal Asymptote at line y = 0 (*x*-axis) (GRAPH on next page)

Homework 29:

- 44) The maximum profit is \$20,000 when 100 units per week are made.
- 52) The temperature that produces the maximum number of salmon is 12° .

Homework 30:

- 8) a) x = number of compact disks in thousands $R(x) = 12000x 125x^2$
 - b) Maximum revenue occurs when 48 thousand are sold.
 - c) The maximum revenue is \$288,000.
- 10) The maximum area occurs when length and width are both 75 meters.

Homework 31:

- 16) a) 65 seats will produce maximum profit.
 - b) That maximum profit is \$422.50.
- 20) Dimensions are 3 ft wide by 6 ft long by 2 ft high

Homework 32:

There are no even bold problems.