Notation for the Derivative:

The derivative of a function $y = f(x)$ may be written in any of these ways (these notations).

1) 'prime' notation: $f'(x)$ or y' (read "f prime of $x"$ or "y prime")

2) \(\frac{dy}{dx} \) (read "dee y to dee $x"$, derivative of y with respect to x)

3) \(\frac{d}{dx} [f(x)] \) (derivative of function $f(x)$ with respect to x)

4) $D_x[f(x)]$ (derivative of function $f(x)$ with respect to x)

Note: In the notations above, the independent variable is x. Other letters could be used for the independent variable and other names could be given to the function (other than f).

A) **Constant Rule:**

If $f(x) = k$, where k represents any real number (a constant), then $f'(x) = 0$. The derivative of a constant is zero.

This rule is reasonable. Derivative represents a 'rate of change'. **If something is constant, it has no 'change'.** Also, the graph of $f(x) = k$ is a horizontal line. At any point on this line, the tangent to $f(x)$ at that point would be the line itself and the slope of a horizontal line is 0. (Remember, the derivative is the slope of a tangent line to a graph at a specified point.)

Examples:

1a) If $g(x) = 9$, find $g'(x)$. $g'(x) = ?$

b) If $y = \frac{\pi}{2}$, find y'. $y' = ?$

c) Find $D_t[2^{300}]$. $D_t[2^{300}] = ?$
B) Power Rule:

If \(f(x) = x^n \), where \(n \) is a real number, then \(f'(x) = nx^{n-1} \).
(The derivative of a power is found by multiplying the exponent by \(x \) to one less power.)

The proof of this rule is found in the textbook on page 199. It is tedious, so I will not prove this rule during class time.

Examples:

2a) \(g(x) = x^{10} \), \(g'(x) = \)

b) \(y = \frac{1}{x^5} \), \(\frac{dy}{dx} = \)

c) \(D_x[x^{3/2}] = \)

C) Derivative of a Constant time a Function:

If \(k \) is any real number and if the derivative of \(g \) exists, then the derivative of \(f(x) = k \cdot g(x) \) is \(f'(x) = k \cdot g'(x) \). (The derivative of a constant times a function is the constant times the derivative of the function.)

Examples 3:

a) \(y = 12x^4 \), \(\frac{dy}{dx} = \)

b) \(g(x) = -\frac{3}{4}x^4 \), \(g'(x) = \)

c) \(D_x[-5t] = \)
D) **Sum or Difference Rule:**

If \(f(x) = u(x) \pm v(x) \), then \(f'(x) = u'(x) \pm v'(x) \) (as long as the derivatives of \(u \) and \(v \) exist. *(The derivative of a sum or difference of functions if the sum or difference of the derivatives.)*

Examples 4:

a) \(y = 5x^3 + 2x^2 - 5x + 9 \), \(\frac{dy}{dx} = \)

b) \(p(n) = 6n^2 - 3\sqrt{n} + \frac{2}{n} \), \(p'(n) = \)

c) \(y = \frac{x^4 - 3x^2 + 2\sqrt{x}}{x} \) (Hint: Rewrite equation without a denominator.)

\(y' = \)

d) \(f(x) = \left(2x^2 - 3x\right)^2 \) (Hint: Rewrite by finding the product.)

\(f'(x) = \)

Marginal cost, marginal revenue, or marginal profit:

In business and economics the rates of change of variables such as cost, revenue, and profit are called **marginal cost, marginal revenue, or marginal profit**. Since the derivative of a function gives the instantaneous rate of change of the function; a marginal cost (or revenue or profit) function is found by taking the derivative. **Roughly, the marginal cost at \(x \) represents the cost of the next \((x + 1) \) item and approximates the value** \(C(x + 1) - C(x) \). Similar statements can be made for marginal profit or marginal revenue.
Example 5:
If the total cost (in hundreds of dollars) to produce \(x \) thousand barrels of a beverage is given by the cost function \(C(x) = 3x^2 + 900x + 450 \), find and interpret \(C'(4) \). Compare with the value of \(C(5) - C(4) \).

Marginal cost evaluated at \(x \) is a good approximation of the actual cost to produce the \((x + 1)\)st unit.
Marginal revenue evaluated at \(x \) is a good approximation of the actual revenue from the sale of the \((x + 1)\)st unit.
Marginal profit evaluated at \(x \) is a good approximation of the actual profit from the sale of the \((x + 1)\)st unit.

The demand function relates the number of units \(x \) of an item that consumers are willing to purchase at the price \(p \). The revenue function can be found if the demand function is known and is \(R(x) = xp \) (number of items times the price/item).
Example 6:
The demand function for a certain product is given by $p = \frac{5000 - 2x}{2500}$ dollars (where x is number of products made and sold). Write a revenue function of the number of items sold. Find the marginal revenue when 1000 units are sold and interpret.

Example 7:
Suppose the revenue function from the sale of x items is given by $R(x) = 3x - 0.01x^2$ and the cost of x items is given by $C(x) = 210 + 0.2x$ for $0 \leq x \leq 10,000$. Write a profit function for this situation. Find the marginal profit (or loss) for 1500 items and interpret.
Example 8 (example 9 of textbook):
The number of Americans (in thousands) who are expected to be over 100 years old can be approximated by the function \(f(t) = 0.00943t^3 - 0.470t^2 + 11.085t + 23.441 \) where \(t \) is the year, with \(t = 0 \) corresponding to 2000 and \(0 \leq t \leq 50 \). Find the derivative of \(f \). Evaluate \(f'(25) \) and interpret.