1. A spherical balloon is inflated at the rate of 8 cubic centimeters per second. Find the rate at which the radius is increasing when the radius is 5 centimeters.

Hint: Volume of a sphere, $V = \frac{4}{3} \pi r^3$

$$\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$$

$$\left. \frac{dr}{dt} \right|_{r=5} = \frac{8}{4\pi (5)^2}$$

A. 100π cm/s
B. 800π cm/s
C. $\sqrt{\frac{2}{\pi}}$ cm/s
D. $\frac{3}{50\pi}$ cm/s
E. $\frac{2}{25\pi}$ cm/s

2. A spotlight on the ground shines on a wall 12 m away. If a man 1.8 m tall walks from the wall to the spotlight at a speed of 1 m/s, how fast is the length of his shadow on the wall changing when he is 3.6 m from the spotlight?

$$\frac{h}{12} = \frac{1.8}{x}$$

$$h = \frac{12(1.8)}{x}$$

$$\frac{dh}{dt} = \frac{12(1.8)}{-x^2} \left(\frac{dx}{dt} \right)$$

$$\left. \frac{dh}{dt} \right|_{x=3.6} = \frac{12(1.8)}{-(3.6)^2} (-1)$$

$$= \frac{6}{3.6} = \frac{60}{36} = \frac{10}{6}$$

A. $-\frac{6}{10}$ m/s
B. $\frac{6}{10}$ m/s
C. $\frac{10}{6}$ m/s
D. $-\frac{10}{6}$ m/s
E. 6 m/s
3. An observer is stationed 2 miles from a rocket launch pad. The rocket rises vertically off the launch pad. \(h \) denotes the height of the rocket (in miles), and \(z \) denotes the distance from the observer to the rocket (in miles). Find a formula for \(\frac{dz}{dt} \).

\[
2z \frac{dz}{dt} = 2h \frac{dh}{dt}
\]

\[
\frac{dz}{dt} = \frac{h \frac{dh}{dt}}{z} = \frac{h}{\sqrt{4+h^2}}
\]

A. \(\sqrt{2h \frac{dh}{dt}} \)
B. \(\sqrt{4 + \left(\frac{dh}{dt} \right)^2} \)
C. \(2h \frac{dh}{dt} \)
D. \(\frac{h \frac{dh}{dt}}{\sqrt{4+h^2}} \)
E. \(\frac{2 + h \frac{dh}{dt}}{\sqrt{4+h^2}} \)

4. Find the approximate value of \(\sqrt{25.1} \) by considering the linear approximation of the function \(f(x) = x^{\frac{1}{2}} \) at \(x = 25 \).

\[
f'(x) = \frac{1}{2\sqrt{x}}
\]

\[
f'(25) = \frac{1}{2\sqrt{25}} = \frac{1}{10}
\]

\[
f(25.1) \approx f(25) + f'(25)(25.1-25)
\]

\[
= 5 + \frac{1}{10}(0.1)
\]

\[
= 5.01
\]
5. Let \(f(x) \) be a polynomial with \(f(2) = 1 \). Assume that \(f'(x) \geq 3 \) for every \(x \) in \([2, 4]\). What is the smallest possible value of \(f(4) \)? *Hint: Apply the Mean Value Theorem.*

A. 1
B. 3
C. 4
D. 6
E. \(7 \)

\[
3 \leq f'(c) = \frac{f(4) - f(2)}{4 - 2} \\
3 \leq \frac{f(4) - 1}{2} \\
3 \cdot 2 + 1 \leq f(4)
\]

6. Find the absolute minimum value of \(f(x) = 3x^3 - x \) on the closed interval \(\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right] \).

A. 0
B. \(-\frac{1}{\sqrt{3}} \)
C. \(-\frac{1}{3} \)
D. \(-\frac{2}{9} \)
E. There is no absolute minimum value.

\[
f'(x) = 9x^2 - 1 \\
\text{CRIT: } x = \pm \frac{1}{3} \\
f\left(-\frac{1}{\sqrt{3}} \right) = 0 \\
f\left(-\frac{1}{3} \right) = -\frac{1}{9} + \frac{1}{3} = \frac{2}{9} \\
f\left(\frac{1}{3} \right) = -\frac{2}{9} \\
f\left(\frac{1}{\sqrt{3}} \right) = 0
\]
7. Consider the function \(f(x) = 1 + \frac{1}{x} - \frac{1}{x^2} \) for \(x \neq 0 \). This function has

A. one local minimum and one point of inflection
B. **one local maximum and one point of inflection**
C. one local minimum and two points of inflection
D. one local maximum and two points of inflection
E. one local minimum, one local maximum, and two points of inflection

\[
\begin{align*}
 f'(x) &= -\frac{1}{x^2} + \frac{2}{x^3} = \frac{2-x}{x^3} , \quad f''(2) < 0 , \text{ so local max at } x=2. \\
 f''(x) &= \frac{2}{x^3} - \frac{6}{x^4} = \frac{2x-6}{x^4} , \quad \text{INF PT at } x=3.
\end{align*}
\]

8. If \(f(x) = xe^{bx^2} \), what is the value of the constant \(b \) such that \(f(x) \) attains its maximum at \(x = 2 \)?

A. \(b = \frac{-1}{2} \)
B. \(b = \frac{1}{4} \)
C. \(b = \frac{-1}{8} \)
D. \(b = -1 \)
E. \(b = 1 \)

Require \(f'(2) = 0 \).

\[
\begin{align*}
 f'(x) &= e^{bx^2} + 2bx^2e^{bx^2} \\
 f'(2) &= e^{4b}(1+8b) \\
 f'(2) &= 0 \iff 1+8b = 0 \iff b = -\frac{1}{8}
\end{align*}
\]
9. Find the point(s) of inflection of the function \(f(x) = \ln(1 - \ln(x)) \) on the interval \(0 < x < e \).

A. \(x = \ln 2 \)
B. \(x = \sqrt{e} \)
C. \(x = \frac{1}{2} \) and \(x = \frac{3}{2} \)
D. \(x = 2 \)
E. \(x = 1 \)

\[
f'(x) = \frac{1}{1-\ln x} \left(-\frac{1}{x} \right) = \frac{1}{x\ln x - x}
\]

\[
f''(x) = -\frac{1}{(x\ln x - x)^2} \left(\ln x + x(\frac{1}{x}) - 1 \right)
\]

\[
= -\frac{\ln x}{(x\ln x - x)^2}
\]

\(f'' \) changes sign at \(x = 1 \).

10. Find the limit.

\[
\lim_{x \to 1^+} \frac{\ln x}{\cot \left(\frac{\pi x}{2} \right)}
\]

A. \(-\infty \)
B. \(\frac{2}{\pi} \)
C. 0
D. \(\frac{\pi}{2} \)
E. \(-\infty \)

\[
= \lim_{x \to 1^+} \frac{\ln x}{\cos \left(\frac{\pi x}{2} \right)} \quad \text{LH}
\]

\[
= \lim_{x \to 1^+} \frac{\frac{1}{x} \sin \left(\frac{\pi x}{2} \right) + \left(\frac{\pi x}{2} \right) \cos \left(\frac{\pi x}{2} \right)}{-\frac{\pi}{2} \sin \left(\frac{\pi x}{2} \right)}
\]

\[
= \frac{1}{-\csc^2 \left(\frac{\pi}{2} \right) \left(\frac{\pi}{2} \right)}
\]

\[
= \frac{1}{-\pi^2}
\]
11. Suppose \(f''(x) = e^{x^2} \) and \(f'(1) = 0 \). At \(x = 1 \), \(f \) has

A. A local maximum
B. A local minimum
C. An inflection point
D. None of these
E. Impossible to determine

\[f''(1) = e^1 > 0 \]

By Second Deriv Test,

\(f \) is concave up at critical number.

12. Which of these curves is the graph of \(y = 1 + 4x^5 - 5x^4 \) between \(x = 0 \) and \(x = 1 \)?

\[y' = 20x^4 - 20x^3 = 20x^3(x-1) \]

\(\text{CRIT: } x=0, x=1 \)

\(\text{GRAPH HAS HORIZONTAL TANGENT} \)