Practice Problems

1. Evaluate
$$\int \frac{1}{(3x-1)^4} dx.$$

A.
$$-\frac{12}{(3x-1)^5} + C$$

B.
$$-\frac{1}{9(3x-1)^3} + C$$

C.
$$\frac{1}{(3x-1)^3} + C$$

D.
$$-\frac{1}{3(3x-1)^3} + C$$

E.
$$-\frac{4}{(3x-1)^5} + C$$

2. Evaluate
$$\int e^{3-2x} dx$$
.

A.
$$-2e^{3-2x} + C$$

B.
$$-\frac{1}{2}e^{3-2x} + C$$

C.
$$\frac{e^{4-2x}}{4-2x} + C$$

D.
$$\frac{1}{3}e^{3-2x} + C$$

E.
$$\frac{e^{3-2x}}{3-2x} + C$$

3. Find a function
$$f$$
 whose tangent line has slope $x\sqrt{5-x^2}$ for each value of x and whose graph passes through the point $(2,10)$.

A.
$$f(x) = -\frac{1}{2}(5-x^2)^{3/2}$$

B.
$$f(x) = \frac{2}{3}(5-x^2)^{3/2} + \frac{28}{3}$$

C.
$$f(x) = \frac{1}{2}(5-x^2)^{3/2} + \frac{29}{2}$$

D.
$$f(x) = -\frac{1}{3}(5 - x^2)^{3/2} + \frac{31}{3}$$

E.
$$f(x) = \frac{3}{2}(5 - x^2)^{3/2} + \frac{17}{2}$$

4. Evaluate
$$\int x \ln(x^2) dx$$
.

A.
$$\frac{1}{2}x^2 \ln x^2 - \frac{1}{2}x^2 + C$$

B.
$$\frac{1}{2}x^2 \ln x^2 - \frac{1}{2}x + C$$

C.
$$\frac{1}{2}x^2 \ln x^2 - \frac{1}{6}x^3 + C$$

D.
$$x \ln x^2 + \frac{1}{x} + C$$

E.
$$\frac{1}{2}x^2 \ln x - \frac{1}{2}x^2 + C$$

- 5. The area of the region bounded by the curves $y = x^2 + 1$ and y = 3x + 5 is
 - A. $\frac{125}{6}$ B. $\frac{56}{3}$ C. $\frac{27}{2}$ D. $\frac{25}{6}$

 - E. $\frac{32}{3}$
- 6. If $f(x,y) = (xy+1)^2 \sqrt{y^2 x^2}$, evaluate f(-2,1).
 - A. 1
 - B. $1 \sqrt{5}$
 - C. Not defined
 - D. $-1 \sqrt{5}$
 - E. $-1 \sqrt{3}$
- 7. A paint store carries two brands of latex paint. Sales figures indicate that if the first brand is sold for x_1 dollars per gallon and the second for x_2 dollars per gallon, the demand for the first brand will be $D_1(x_1, x_2) = 100 + 5x_1 - 10x_2$ gallons per month and the demand for the second brand will be $D_2(x_1, x_2) = 200 - 10x_1 + 15x_2$ gallons per month. Express the paint store's total monthly revenue, R, as a function of x_1 and x_2 .
 - A. $R = x_1D_1(x_1, x_2) + x_2D_2(x_1, x_2)$
 - B. $R = D_1(x_1, x_2) + D_2(x_1, x_2)$
 - C. $R = D_1(x_1, x_2)D_2(x_1, x_2)$
 - D. $R = x_2 D(x_1, x_2) + x_1 D_2(x_1, x_2)$
 - E. $R = x_1x_2 + D_1(x_1, x_2)D_2(x_1, x_2)$
- 8. Compute $\frac{\partial z}{\partial x}$, where $z = \ln(xy)$.
 - A. $\frac{1}{x}$

 - B. $\frac{1}{y}$ C. $\frac{1}{xy}$
 - D. $\frac{1}{x} + \frac{1}{y}$
- 9. Compute f_{uv} if $f = uv + e^{u+2v}$.
 - A. 0
 - B. $u + 2e^{u+2v}$
 - C. $v + 2e^{u+2v}$
 - D. $1 + 2e^{u+2v}$
 - E. $1 + e^{u+2v}$

- 10. Find and classify the critical points of $f(x,y) = (x-2)^2 + 2y^3 6y^2 18y + 7$.
 - A. (2,3) saddle point; (2,-1) relative minimum
 - B. (2,3) relative maximum; (2,-1) relative minimum
 - C. (2,3) relative minimum; (2,-1) relative maximum
 - D. (2,3) relative maximum; (2,-1) saddle point
 - E. (2,3) relative minimum; (2,-1) saddle point
- 11. A manufacturer sells two brands of foot powder, brand A and brand B. When the price of A is x cents per can and the price of B is y cents per can the manufacturer sells 40-8x+5y thousand cans of A and 50+9x-7y thousand cans of B. The cost to produce A is 10 cents per can and the cost to produce B is 20 cents per can. Determine the selling price of brand A which will maximize the profit.
 - A. 40 cents
 - B. 45 cents
 - C. 15 cents
 - D. 50 cents
 - E. 35 cents
- 12. Use increments to estimate the change in z at (1,3) if $\frac{\partial z}{\partial x} = 2x 4$, $\frac{\partial z}{\partial y} = 2y + 7$, the change in x is 0.3 and the change in y is 0.5.
 - A. 7.1
 - B. 2.9
 - C. 4.9
 - D. 5.9
 - E. 6.3
- 13. Using x worker-hours of skilled labor and y worker-hours of unskilled labor, a manufacturer can produce $f(x,y)=x^2y$ units. Currently 16 worker-hours of skilled labor and 32 worker-hours of unskilled labor are used. If the manufacturer increases the unskilled labor by 10 worker-hours, use calculus to estimate the corresponding change that the manufacturer should make in the level of skilled labor so that the total output will remain the same.
 - A. Reduce by 4 hours.
 - B. Reduce by 10 hours.
 - C. Reduce by $\frac{5}{4}$ hours.
 - D. Reduce by $\frac{5}{2}$ hours.
 - E. Reduce by 5 hours.

- 14. Find the maximum value of the function $f(x,y) = 20x^{3/2}y$ subject to the constraint x + y = 60. Round your answer to the nearest integer.
 - A. 84,654
 - B. 188,334
 - C. 4,320
 - D. 259,200
 - E. 103,680
- 15. Evaluate $\int_{1}^{2} \int_{0}^{1} (2x+y) \ dy dx$.
 - A. $\frac{9}{2}$

 - B. $\frac{5}{2}$ C. $\frac{3}{2}$ D. $\frac{7}{2}$
 - E. $\frac{1}{2}$
- 16. The general solution of the differential equation $\frac{dy}{dx} = 2y + 1$ is:
 - A. $x = y^2 + y + C$
 - B. $2y + 1 = Ce^{2x}$
 - $C. \ y = 2xy + x + C$
 - D. $y = Ce^{2x} 2y 1$
 - E. $y = Ce^{2x}$
- 17. The value, V, of a certain \$1500 IRA account grows at a rate equal to 13.5% of its value. Its value after t years is:
 - A. $V = 1500e^{-0.135t}$
 - B. V = 1500 + 0.135t
 - C. $V = 1500e^{0.135t}$
 - D. V = 1500(1 + 0.135t)
 - E. $V = 1500 \ln(0.135t)$
- 18. It is estimated that t years from now the population of a certain town will be increasing at a rate of $5 + 3t^{2/3}$ hundred people per year. If the population is presently 100,000, by how many people will the population increase over the next 8 years?
 - A. 100
 - B. 9,760
 - C. 6,260
 - D. 24,760
 - E. 17,260

- 19. Calculate the improper integral $\int_0^\infty x e^{-x^2} dx$.
 - A. $-\frac{1}{2}$
 - B. 1
 - C. $\frac{1}{2}$
 - D. $\frac{5}{2}$
 - E. The integral diverges.
- 20. An object moves so that its velocity after t minutes is given by the formula $v = 20e^{-0.01t}$. The distance it travels during the 10th minute is
 - A. $\int_0^{10} 20e^{-0.01t} dt$
 - B. $\int_{9}^{10} (-20e^{-0.01t})dt$
 - C. $\int_0^{10} (-20e^{-0.01t})dt$
 - D. $\int_{9}^{10} 20e^{-0.01t} dt$
 - E. $\int_{0}^{10} (-0.2e^{-0.01t})dt$
- 21. Find the sum of the series $\sum_{n=1}^{\infty} \left(-\frac{2}{3}\right)^n$.
 - A. $\frac{2}{5}$
 - B. $-\frac{2}{5}$
 - C. $\frac{3}{2}$
 - D. $-\frac{3}{2}$
 - E. The series diverges.
- 22. Use a Taylor polynomial of degree 2 to approximate $\int_0^{0.1} \frac{100}{x^2 + 1} dx$. Round your answer to five decimal places.
 - A. 9.96687
 - B. 10.00000
 - C. 9.96677
 - D. 9.66667
 - E. 9.96667

23. Find the radius of convergence of the power series
$$\sum_{n=0}^{\infty} \frac{n3^n x^n}{5^{n+1}}$$
.

- A. $\frac{5}{3}$
- B. 1
- C. $\frac{3}{25}$ D. $\frac{3}{5}$
- E. ∞

24. Find the Taylor series of
$$f(x) = \frac{x}{2+x^2}$$
 at $x = 0$.

A.
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{2^{n+1}}$$

B.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2^n}$$

C.
$$\sum_{n=0}^{\infty} (-1)^n 2^{n-1} x^{2n+1}$$

D.
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{2^{n-1}}$$

E.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2^{n+1}}$$

$$5 - \frac{7}{8} + \frac{9}{27} - \frac{11}{64} + \dots$$

A.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+5}{n^3}$$

B.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+3}{n^3}$$

C.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3n+2}{n^3}$$

D.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+5}{2^n}$$

E.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+3}{2^n}$$

26. Determine which of the following series converge.

$$I. \sum_{k=2}^{\infty} \frac{k^2}{5^k}$$

II.
$$\sum_{k=3}^{\infty} \frac{(3k+1)\pi^{2k}}{10^{k+1}}$$

III.
$$\sum_{k=1}^{\infty} \frac{k!}{(-2)^k}$$

- A. III
- B. I & II
- C. I & III
- D. II & III
- E. II
- 27. Find the Taylor series about x = 0 for the indefinite integral

$$\int xe^{-x^3}dx.$$

A.
$$\sum_{n=0}^{\infty} \frac{1}{n!(3n+1)} x^{3n+2} + C$$

B.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!(3n+2)} x^{3n+2} + C$$

C.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!(3n+1)} x^{3n+2} + C$$

D.
$$\sum_{n=0}^{\infty} \frac{1}{n!(3n+2)} x^{3n+2} + C$$

E.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!(3n+1)} x^{3n+1} + C$$

28. A patient is given an injection of 50 milligrams of a drug every 24 hours. After t days, the fraction of the drug remaining in the patient's body is

$$f(t) = 2^{-t/3}.$$

If the treatment is continued indefinitely, approximately how many milligrams of the drug will eventually be in the patient's body just prior to an injection?

- A. 202.7
- B. 152.7
- C. 305.4
- D. 242.4
- E. 192.4

29. Compute
$$\int (\sin x - \cos x)(\sin x + \cos x)^5 dx$$
.

A.
$$\frac{1}{6}(-\cos x + \sin x)^6 + C$$

B.
$$-6(-\cos x + \sin x)^6 + C$$

C.
$$-\frac{1}{6}(\sin x + \cos x)^6 + C$$

D.
$$6(\sin x + \cos x)^6 + C$$

E.
$$\frac{1}{6}(\sin x + \cos x)^6 + C$$

30. Evaluate
$$\int x^2 \cos(-5x) dx$$
.

A.
$$-\frac{1}{5}x^2\sin(-5x) + \frac{2}{25}x\cos(-5x) + \frac{2}{125}\sin(-5x) + C$$

B.
$$\frac{1}{5}x^2\sin(-5x) - \frac{2}{25}x\cos(-5x) - \frac{2}{125}\sin(-5x) + C$$

C.
$$-5x^2\sin(-5x) + 50x\cos(-5x) + 250\sin(-5x) + C$$

D.
$$5x^2\cos(-5x) - 50x\sin(-5x) - 250\cos(-5x) + C$$

E.
$$5x^2 \sin(-5x) - 50x \cos(-5x) - 250 \sin(-5x) + C$$

31. Evaluate
$$\int_e^5 \frac{\ln(x^4)}{x} dx$$
.

A.
$$\frac{1}{8}(25 - e^2)$$

B.
$$2(25 - e^2)$$

C.
$$2(\ln 5)^2 - 2$$

D.
$$\frac{1}{8}(\ln 5)^2 - \frac{1}{8}$$

E.
$$ln(25) - 2$$

$$y = 3e^{2x}, y = 0, x = 1, \text{ and } x = 3$$

about the x-axis.

A.
$$\frac{3\pi}{4}(e^8 - 1)e^4$$

B.
$$\frac{3\pi}{4}(e^8-1)e^2$$

C.
$$\frac{9\pi}{2}(e^4-1)e^2$$

D.
$$\frac{9\pi}{4}(e^8 - 1)e^4$$

E.
$$\frac{3\pi}{2}(e^4-1)e^2$$

- 33. Find the volume of the solid which has square cross-sections with side length $5x^2$ at each point $2 \le x \le 4$.
 - $A. \int_2^4 5\pi x^2 dx$
 - B. $\int_{2}^{4} 5x^{2} dx$
 - $C. \int_2^4 5x^4 dx$
 - D. $\int_{2}^{4} 25\pi x^{4} dx$
 - E. $\int_{2}^{4} 25x^4 dx$
- 34. The velocity of a car over the time period $0 \le t \le 3$ is given by the function

$$v(t) = 60te^{\frac{-t}{4}}$$

miles per hour, where t is time in **hours**. What was the distance the car traveled in the first 90 **minutes**? Round your answer to two decimal places.

- A. 166.42 miles
- B. 156.19 miles
- C. 126.63 miles
- D. 75.85 miles
- E. 52.78 miles
- 35. Given that $f(x,y) = \tan(xy^3)$, compute $f_x(2\pi, \frac{1}{2})$.
 - A. $\frac{3}{2}$
 - B. $\frac{\pi}{2}$
 - C. 1
 - D. 6π
 - E. $\frac{1}{4}$
- 36. Let $h(x,y) = y\sin(xy)$. Find $\frac{\partial^2 h}{\partial y \partial x}$.
 - A. $-2xy\sin(xy)$
 - B. $2y\cos(xy) xy^2\sin(xy)$
 - C. $-y^3 \sin(xy)$
 - D. $\cos(xy) + y^2 \sin(xy)$
 - $E. (x+1)\cos(xy) x^2y\sin(xy)$

37. A nature preserve wishes to construct a large compound which will hold both lions and gazelles. They currently have 6 gazelles. They estimate that if they use an area of A square miles and introduce L lions, then they will be able to support a population of G gazelles, given by the function

$$G(A, L) = 6 + 40A - A^2 - 18L^2 + 176L - 8AL$$

What conditions will lead to the largest number of gazelles?

- A. L = 3, A = 5
- B. L = 4, A = 4
- C. L = 5, A = 4
- D. L = 5, A = 3
- E. There are no such conditions because the function does not have a maximum.
- 38. Evaluate $\iint_R (e^{x^2+1}) dA$, where R is the region indicated by the boundaries below:

$$0 \le x \le 1$$
; $0 \le y \le x$

- A. 0
- B. $\frac{1}{2}e$
- C. $\frac{1}{2}e^2$
- D. $\frac{1}{2}(e^2 e)$
- E. $e^2 e$
- 39. Compute AB and BA, if possible, for the matrices:

$$A = \begin{bmatrix} 2 & -1 \\ 0 & -3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 \\ -5 & 1 \\ 2 & 0 \end{bmatrix}$$

- A. BA is not possible, and $AB = \begin{bmatrix} -1 & -3 \\ -11 & -3 \\ 4 & 0 \end{bmatrix}$
- B. BA is not possible, and $AB = \begin{bmatrix} -1 & -11 & 4 \\ -3 & -3 & 0 \end{bmatrix}$
- C. AB is not possible, and $BA = \begin{bmatrix} 0 & -3 \\ -10 & 2 \\ 4 & -2 \end{bmatrix}$
- D. AB is not possible, and $BA = \begin{bmatrix} 0 & -10 & 4 \\ -3 & 2 & -2 \end{bmatrix}$
- E. Both AB and BA are not possible.

40. Find the general solution to the differential equation

$$-x^5\sin x + xy' = 3y, \quad x > 0$$

- A. $y = -x \cos x \sin x + C$
- B. $y = -x\cos x + \sin x + C$
- C. $y = x \cos x + \sin x + C$
- D. $y = -x^4 \cos x + x^3 \sin x + Cx^3$
- E. $y = x^4 \cos x + x^3 \sin x + Cx^3$
- 41. The amount of carbon, in grams, in a sample of soil is given by a function, F(t), satisfying the differential equation:

$$F' + aF - b = 0$$

- where a and b are constants, and time, t, is measured in years. If the sample originally contains 10 grams of carbon, which expression represents the amount of carbon present after 5 years?
 - A. $\frac{b}{a} + (10 \frac{b}{a})e^{5a}$
 - B. $\frac{b}{a} + (10 \frac{b}{a})e^{-5a}$
 - C. $ab + (10 ab)e^{-5a}$
- D. $ab + (10 ab)e^{5a}$
- E. $\frac{b}{a} + 10e^{5a}$
- 42. Let $M = \begin{bmatrix} 4 & 3 \\ -2 & -1 \end{bmatrix}$. Compute $3M M^2$.
 - A. $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
 - B. $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$
 - C. $\begin{bmatrix} 2 & 0 \\ -1 & 2 \end{bmatrix}$
 - D. $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$
 - E. $\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$

43. Write the following augmented matrix in reduced row-echelon form.

$$\left[\begin{array}{ccc|c}
2 & -3 & 2 & 1 \\
1 & -6 & 1 & 2 \\
-1 & -3 & -1 & 1
\end{array} \right]$$

A.
$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -\frac{1}{3} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{c|ccccc}
C & \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}
\end{array}$$

$$D \left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 1 & 0
\end{array} \right]$$

E.
$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- 44. Find all the eigenvalues of the matrix $\begin{bmatrix} 9 & 20 \\ -6 & -13 \end{bmatrix}$.
 - A. -5 and 2
 - B. -3 and -1
 - C. -4 and 0
 - D. 3 and 7
 - E. 2 and -2
- 45. Find the determinant of the matrix A, and determine if A is invertible.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & -3 & 1 \end{bmatrix}$$

- A. A is not invertible because det(A) = 9.
- B. A is invertible because det(A) = 9.
- C. A is not invertible because det(A) = -9.
- D. A is invertible because det(A) = -9.
- E. A is not invertible because det(A) = 0.

46. The inverse of a certain Leslie matrix

$$G = \begin{bmatrix} 1/2 & 2 \\ 1/2 & 1/2 \end{bmatrix}$$

is

$$G^{-1} = \begin{bmatrix} -2/3 & 8/3 \\ 2/3 & -2/3 \end{bmatrix}.$$

If the population vector in **year 2** is $p_2 = \begin{bmatrix} \text{hatchlings} \\ \text{adults} \end{bmatrix} = \begin{bmatrix} 129 \\ 72 \end{bmatrix}$, then the population vector in **year 1**, $p_1 = \begin{bmatrix} \text{hatchlings} \\ \text{adults} \end{bmatrix} =$

A.
$$\begin{bmatrix} -2/3 & 8/3 \\ 2/3 & -2/3 \end{bmatrix} \begin{bmatrix} 129 \\ 72 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1/2 & 2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 129 \\ 72 \end{bmatrix}$$

C.
$$\begin{bmatrix} -2/3 & 8/3 \\ 2/3 & -2/3 \end{bmatrix} \begin{bmatrix} 1/2 & 2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 129 \\ 72 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1/2 & 2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} -2/3 & 8/3 \\ 2/3 & -2/3 \end{bmatrix} \begin{bmatrix} 129 \\ 72 \end{bmatrix}$$

E.
$$\left(\begin{bmatrix} -2/3 & 8/3 \\ 2/3 & -2/3 \end{bmatrix} + \begin{bmatrix} 1/2 & 2 \\ 1/2 & 1/2 \end{bmatrix} \right) \begin{bmatrix} 129 \\ 72 \end{bmatrix}$$

47. Which of the following are eigenvectors of the matrix $\begin{bmatrix} 0 & 6 \\ 1 & 1 \end{bmatrix}$?

$$I. \begin{bmatrix} -3 \\ 1 \end{bmatrix} \quad II. \begin{bmatrix} 3 \\ 3 \end{bmatrix} \quad III. \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$

- A. I only
- B. II only
- C. I and II only
- D. I and III only
- E. II and III only

Answers to Practice Problems

1. B	
5. A	
9. D	
13. D	
17. C	
21. B	
25. B	
29. C	
33. E	
37. B	
41. B	
45. B	

0 D		
2. B		
6. C		
10. E		
14. E		
18. B		
22. E		
26. B		
30. A		
34. E		
38. D		
42. A		
46. A		

3. D		
7. A		
11. A		
15. D		
19. C		
23. A		
27. B		
31. C		
35. E		
39. C		
43. A		
47. D		

4. 1	4
8. /	4
12.	D
16.	В
20.	D
24.	\mathbf{E}
28.	\mathbf{E}
32.	D
36.	В
40.	D
44.	В