MA 15910 Lesson 20 Notes (Calculus part of text) Section 4.4 Derivatives of Exponential Functions

How does one find the derivative of a natural exponential function, $y = f(x) = e^x$? I will derive the formula for a derivative of the function $f(x) = e^x$ using the limit definition for a derivative.

$$derivative = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

$$\frac{d(e^x)}{dx} = \lim_{h \to 0} \left(\frac{e^{x+h} - e^x}{h} \right) \quad \text{(Remember: Exponents are added when powers are multiplied.)}$$

$$= \lim_{h \to 0} \left(\frac{e^x e^h - e^x}{h} \right) \quad \text{Factor out an } e^x \text{ in the numerator.}$$

$$= \lim_{h \to 0} \left(\frac{e^x (e^h - 1)}{h} \right) \quad \text{Rewrite the fraction as a product.}$$

$$= \lim_{h \to 0} \left[e^x \left(\frac{e^h - 1}{h} \right) \right]$$

$$= \left(\lim_{h \to 0} e^x \right) \left(\lim_{h \to 0} \left(\frac{e^h - 1}{h} \right) \right) \text{For } h \text{ values very close to zero, } \left(\frac{e^h - 1}{h} \right) \approx 1$$
(You can see a table on page 228 of the calculus part of the textbook to verify this.)
Therefore:
$$\frac{d(e^x)}{dx} = \lim_{h \to 0} (e^x) \cdot 1 = e^x \quad \frac{d(e^x)}{dx} = e^x$$

This argument or proof leads to the following conclusion and derivative rule.

Derivative of
$$e^x$$
: $\frac{d}{dx}(e^x) = e^x$

Note: MA 15910 students are only responsible for studying derivatives of natural exponential functions, those with base *e*. For your information only, I have included here (next page, also in the textbook) the derivative rule for an exponential function of any other base.

Finding Derivatives of exponential functions with bases other than e:

OPTIONAL

**To find the rule to determine the derivative of exponential functions with bases other than e, we use the following fact. By the 'composition of inverse functions' in algebra, $e^{\ln a} = a$. **

 $e^{\ln a} = a$ by the definition of inverse functions

 $e^{(\ln a)x} = (e^{(\ln a)})^x$ Product rule of exponents = a^x

Therefore: $a^x = e^{(\ln a)x}$ Use this fact to find the derivative of a^x .

Derivative of
$$a^x$$
:

$$\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{(\ln a)x})$$

$$= (e^{(\ln a)x})(\ln a)$$

$$= (\ln a)a^x$$

$$\frac{d}{dx}(a^x) = (\ln a)a^x$$

**Note: There are no homework problems assigned with exponential functions with any base other than *e*. Therefore the above derivative rule is not necessary for students to study. I simply provide it for information purposes only.

Remember the 'chain rule' must be used if the exponent is an expression (a function) other than the variable x.

Derivatives of exponential functions (base *e*) using the chain rule:

$$\frac{d}{dx}\left(e^{g(x)}\right) = (e^{g(x)})(g'(x))$$

The derivative of $e^{g(x)}$ Is itself times the derivative of the exponent, g(x).

<u>Ex</u> 1: Find the derivatives:

a) $y = e^{3x}$ b) $y = e^{(5x+6x^2)}$

c)
$$D_x(3.8e^{1.5x}) = d$$
 $h(x) = -12e^{x^2}$

Always write answers to these <u>derivatives in factored form</u>. Factor out a GCF.

e) $y = 4e^{4x^2 + 2x}$ f) $y = 3x^3e^{-4x}$ (Use product rule.) 1st: $3x^3$ 2nd: e^{-4x}

g)
$$g(x) = (5x^2 - 7x^3)e^{-3x}$$
 (Use product rule.)
1st : $(5x^2 - 7x^3)$ 2nd : e^{-3x} Chain rule will be used in 'dee two'.

$$h) \qquad y = \frac{e^{2x}}{3x^2 + 5}$$

Rule for finding the derivative of a natural exponential function is used within the quotient rule.

i) $f(x) = (e^{4x^2} + 10x)^4$

Chain rule is used with the 4th power being the outer function and the inside of the parentheses is the inner function.

 $j) \qquad y = \frac{200}{8+3e^x}$

Rule for finding derivative of an exponential function is used within the quotient rule. or Rewrite the function as $y = 200(8+3e^x)^{-1}$ and use the chain rule.

Ex 2: The quantity (in grams) of a radioactive substance present after t years is given by the model $Q(t) = 100e^{-0.421t}$.

- Find the quantity when t = 0, t = 2, t = 5. a)
- Find the <u>rate of change</u> after (a) 2 years, (b) 5 years. b)

<u>Ex 3</u>:

The growth of the world population (in millions) can be approximated by the function $A(t) = 3100e^{(0.0166t)}$ where *t* is the number of years since 1960. Find the of <u>instantaneous rate of change</u> in the world population for the year (a) 2010 and (b) 2015.

<u>Ex 4</u>:

The amount (in grams) of a sample of an element present after t years is given by $A(t) = 400e^{-0.4t}$. Find the <u>rate of change</u> of the quantity after (a) 3 years, (b) 5 years, (c) 15 years (d) 30 years, and (e) 100 years.