THE SECOND DERIVATIVE TEST

Suppose f is a function of two variables x and y, and that all the second-order partial derivatives are continuous. Let

$$
d=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

and suppose (a, b) is a critical point of f.

1. If $d(a, b)>0$ and $f_{x x}(a, b)>0$, then f has a relative minimum at (a, b).
2. If $d(a, b)>0$ and $f_{x x}(a, b)<0$, then f has a relative maximum at (a, b).
3. If $d(a, b)<0$, then f has a saddle point at (a, b).
4. If $d(a, b)=0$, the test is inconclusive.

LAGRANGE EQUATIONS

For the function $f(x, y)$ subject to the constraint $g(x, y)=c$, the Lagrange equations are

$$
f_{x}=\lambda g_{x} \quad f_{y}=\lambda g_{y} \quad g(x, y)=c
$$

GEOMETRIC SERIES
If $0<|r|<1$, then

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

VOLUME \& SURFACE AREA

Right Circular Cylinder	Sphere	Right Circular Cone
$V=\pi r^{2} h$	$V=\frac{4}{3} \pi r^{3}$	$V=\frac{1}{3} \pi r^{2} h$
$S A=\left\{\begin{array}{ll}2 \pi r^{2}+2 \pi r h & S A=4 \pi r^{2} \\ \pi r^{2}+2 \pi r h & \end{array}\right)$		

Right Circular Cylinder $V=\pi r^{2} h$
$S A=\left\{\begin{array}{l}2 \pi r^{2}+2 \pi r h \\ \pi r^{2}+2 \pi r h\end{array}\right.$

Sphere
Right Circular Cone
$V=\frac{1}{3} \pi r^{2} h$
$S A=\pi r \sqrt{r^{2}+h^{2}}+\pi r^{2}$

