$\frac{MA 16100}{Study Guide - Exam \# 3}$

9 Increasing functions: $f'(x) > 0 \Longrightarrow f \nearrow$; decreasing functions: $f'(x) < 0 \Longrightarrow f \searrow$.

|10| First Derivative Test: Suppose c is a critical number of a continuous function f.

- (a) If f' changes from + to at $c \Longrightarrow f$ has local max at c
- (b) If f' changes from to + at $c \Longrightarrow f$ has local min at c
- (c) If f' does not change sign at $c \Longrightarrow f$ has <u>neither</u> local max nor local min at c

(Displaying this information on a number line is much more efficient, see above figure.)

<u>11</u> f concave up: $f''(x) > 0 \Longrightarrow f \bigcup$; and f concave down: $f''(x) < 0 \Longrightarrow f \cap$; inflection point (i.e. point where concavity changes).

(Displaying this information on a number line is much more efficient, see above figure.)

12 <u>Second Derivative Test</u>: Suppose f'' is continuous near critical number c and f'(c) = 0.

- (a) If $f''(c) > 0 \implies f$ has a local min at c.
- (b) If $f''(c) < 0 \implies f$ has a local max at c.

Note: If f''(c) = 0, then 2^{nd} Derivative Test cannot be used, so then use 1^{st} Derivative Test.

13 <u>INDETERMINATE FORMS</u>:

- (a) Indeterminate Form (Types): $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty \infty, 0^0, \infty^0, 1^{\infty}$
- (b) **L'Hopital's Rule**: Let f and g be differentiable and $g'(x) \neq 0$ on an open interval I containing a (except possibly at a). If $\lim_{x \to a} f(x) = 0$ and if $\lim_{x \to a} g(x) = 0$ [Type $\frac{0}{0}$]; or if $\lim_{x \to a} f(x) = \infty$ (or $-\infty$) and if $\lim_{x \to a} g(x) = \infty$ (or $-\infty$) [Type $\frac{\infty}{\infty}$], then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right side exists or is infinite.

Use algebra to convert the different Indetermine Forms in (a) into expressions where the above formula can be used.

Important Remark: L'Hopital's Rule is also valid for one-sided limits, $x \to a^-$, $x \to a^+$, and also for limits when $x \to \infty$ or $x \to -\infty$.

14 Curve Sketching Guidelines:

- (a) Domain of f
- (b) Intercepts (if any)
- (c) Symmetry:
 - f(-x) = f(x) for *even* function;

f(-x) = -f(x) for *odd* function;

f(x+p) = f(x) for *periodic* function

(d) Asymptotes:

x = a is a Vertical Asymptote: if either $\lim_{x \to a^-} f(x)$ or $\lim_{x \to a^+} f(x)$ is infinite

y = L is a Horizontal Asymptote: if either $\lim_{x \to \infty} f(x) = L$ or $\lim_{x \to -\infty} f(x) = L$.

- (e) Intervals: where f is increasing \nearrow and decreasing \searrow ; local max and local min
- (f) Intervals: where f is concave up \bigcup and concave down \bigcap ; inflection points