LAB 10

7. Let
$$w\mathbf{1} = \begin{bmatrix} \sqrt{3}/3 \\ \sqrt{3}/3 \\ \sqrt{3}/3 \end{bmatrix}$$
, $w\mathbf{2} = \begin{bmatrix} -\sqrt{2}/2 \\ 0 \\ \sqrt{2}/2 \end{bmatrix}$ and $W = \mathbf{span}\{w\mathbf{1}, w\mathbf{2}\}.$

a) Show that $\{w1, w2\}$ is an orthonormal set.

b) Use 10.4 to determine
$$\mathbf{proj}_{W} \mathbf{u}$$
 where $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$.

Section 10.3

<u>The Gram – Schmidt Process</u>

Γ , ٦

The ideas about projections in Section 10.2 actually tell us a way to construct an orthonormal basis from an existing basis provided we build the new basis one vector at a time.

The Gram-Schmidt process takes a basis $S = \{u_1, u_2, ..., u_n\}$ for a subspace of an inner product space V and produces a new basis $T = \{w_1, w_2, ..., w_n\}$ whose vectors form an orthonormal set. The process is often performed in two stages:

- First from the S-basis generate a basis $\{v_1, v_2, ..., v_n\}$ of vectors that are mutually orthogonal. That is, $(v_i, v_j) = 0, i \neq j$.
- Second normalize each of the orthogonal basis vectors into a unit vector.

The first stage involves solving a set of equations and the second is easily performed using $w_i = v_i / ||v_i||$. At each step in the first stage we use projections onto subspaces.

The First Stage

Step 1. Define $v_1 = u_1$.

Step 2. Look for a vector v_2 in the span $\{v_1, u_2\}$ that is orthogonal to v_1 . This will then guarantee that

 $\begin{array}{ll} \mathbf{span}\{u_1,u_2\} &= \mathbf{span}\{v_1,u_2\} & \mathrm{since} \ v_1 = u_1 \\ &= \mathbf{span}\{v_1,v_2\} & \mathrm{since} \ v_2 \ \mathrm{is} \ \mathrm{a} \ \mathrm{linear} \\ &\mathrm{combination} \ \mathrm{of} \ v_1 \mathrm{and} \ u_2 \end{array}$

Let $v_2 = k_1 v_1 + k_2 u_2$. Find k_1 and k_2 so that $(v_1, v_2) = 0$.

$$0 = (v_1, v_2) = k_1(v_1, v_1) + k_2(v_1, u_2)$$

We have one equation in two unknowns, so let $k_2 = 1$ and solve for k_1 . We get

$$k_1 = rac{-(v_1, u_2)}{(v_1, v_1)}$$

thus we have

$$v_2 = u_2 - rac{(v_1, u_2)}{(v_1, v_1)} v_1 = u_2 - \mathrm{proj}_{v_1} \; u_2$$

Step 3. Look for a vector v_3 in span $\{v_1, v_2, u_3\}$ that is orthogonal to both v_1 and v_2 . This will guarantee that span $\{u_1, u_2, u_3\} =$ span $\{v_1, v_2, u_3\} =$ span $\{v_1, v_2, v_3\}$. Let $v_3 = k_1v_1 + k_2v_2 + k_3u_3$. Find k_1, k_2 , and k_3 so that $(v_1, v_3) = 0$ and $(v_2, v_3) = 0$.

$$0 = (v_1, v_3) = k_1(v_1, v_1) + k_2(v_1, v_2) + k_3(v_1, u_3)$$

$$0 = (v_2, v_3) = k_1(v_2, v_1) + k_2(v_2, v_2) + k_3(v_2, u_3)$$

Since by construction (v1, v2) = 0 the preceding equations simplify to

$$egin{array}{rcl} k_1(m{v_1},m{v_1}) & + k_3(m{v_1},m{u_3}) = 0 \ k_2(m{v_2},m{v_2}) & + k_3(m{v_2},m{u_3}) = 0 \end{array}$$

Thus we have 2 equations in 3 unknowns. Let $k_3 = 1$, then we find that

$$k_1 = rac{-(v_1, u_3)}{(v_1, v_1)}$$
 and $k_2 = rac{-(v_2, u_3)}{(v_2, v_2)}$

and hence

$$v_3 = u_3 - rac{(v_1, u_3)}{(v_1, v_1)} v_1 - rac{(v_2, u_3)}{(v_2, v_2)} v_2 = u_3 - \mathrm{proj}_{\mathrm{span}} \{v_1, v_2\} \,\, u_3$$

Other steps: $v_k = u_k - \operatorname{proj}_{\operatorname{span}}\{v_1, v_2, \dots, v_{k-1}\} \ u_k$

The Second Stage

The orthonormal basis for \mathbf{V} is given by

$$\{w_1, w_2, \ldots, w_n\} = \left\{ \begin{array}{cc} \underline{v_1} \\ \|\overline{v_1}\|, & \frac{v_2}{\|\overline{v_2}\|}, & \ldots, & \frac{v_n}{\|\overline{v_n}\|} \end{array} \right\}$$

Example 1. Let $V = span\{u_1, u_2, u_3\}$ where

$$\boldsymbol{u_1} = \begin{bmatrix} 2\\1\\0\\4 \end{bmatrix}, \boldsymbol{u_2} = \begin{bmatrix} 1\\0\\1\\3 \end{bmatrix}, \boldsymbol{u_3} = \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix}$$

Use the Gram-Schmidt process to find an orthonormal basis for V.

Step 1. Define $\mathbf{v_1} = \mathbf{u_1} = \begin{bmatrix} 2\\1\\0\\4 \end{bmatrix}$. Step 2. Compute $\mathbf{v_2} = \mathbf{u_2} - \operatorname{proj}_{\mathbf{v_1}} \mathbf{u_2} = \mathbf{u_2} - \frac{(\mathbf{v_1}, \mathbf{u_2})}{(\mathbf{v_1}, \mathbf{v_1})} \mathbf{v_1} = \begin{bmatrix} 1\\0\\1\\3 \end{bmatrix} - \frac{14}{21} \begin{bmatrix} 2\\1\\0\\4 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3}\\-\frac{2}{3}\\1\\\frac{1}{3} \end{bmatrix}$. Step 3. Compute $\mathbf{v_3} = \mathbf{u_3} - \operatorname{proj}_{\operatorname{span}}\{\mathbf{v_1}, \mathbf{v_2}\} \mathbf{u_3} = \mathbf{u_3} - \frac{(\mathbf{v_1}, \mathbf{u_3})}{(\mathbf{v_1}, \mathbf{v_1})} \mathbf{v_1} - \frac{(\mathbf{v_2}, \mathbf{u_3})}{(\mathbf{v_2}, \mathbf{v_2})} \mathbf{v_2} = \begin{bmatrix} 1\\2\\1\\0\\4 \end{bmatrix} - \frac{4}{21} \begin{bmatrix} 2\\1\\0\\4 \end{bmatrix} - \frac{(-2/3)}{15/9} \begin{bmatrix} -\frac{1}{3}\\-\frac{2}{3}\\1\\\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{17}{35}\\-\frac{54}{35}\\-\frac{7}{5}\\-\frac{-22}{35} \end{bmatrix}$.

The set $\{v_1, v_2, v_3\}$ is an orthogonal basis for V. An orthonormal basis is obtained by dividing each vector by it length.

$$w_1 = \frac{v_1}{\sqrt{21}}, \qquad w_2 = \frac{v_2}{\sqrt{17/9}}, \qquad w_3 = \frac{v_3}{\sqrt{6090/1225}}$$

For $\mathbf{V} = \mathbb{R}^n$ and the standard inner product both stages of the Gram-Schmidt process are available in MATLAB routine gschmidt. Type help gschmidt for more details. The following examples illustrate the use of routine gschmidt.

<u>Example 2.</u> Let $\mathbf{S} = \{ u_1, u_2, u_3 \} = \left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\1 \end{bmatrix} \right\}$ be a basis for \mathbb{R}^3 . To find an

orthonormal basis from **S** using MATLAB enter the vectors u_1, u_2, u_3 as columns of a matrix A and type

$$B = gschmidt(A)$$

LAB 10

17

The display generated is

B =

0.4472	0.7807	-0.4364
0	0.4880	0.8729
0.8944	-0.3904	0.2182

The columns of \boldsymbol{B} are an orthonormal basis for \mathbb{R}^3 .

Example 3. We will show how to find an orthonormal basis for \mathbb{R}^4 containing scalar multiples of the vectors

$$\boldsymbol{v_1} = \begin{bmatrix} 1\\0\\1\\-1 \end{bmatrix} \text{ and } \boldsymbol{v_2} = \begin{bmatrix} -1\\1\\2\\1 \end{bmatrix}.$$

First enter v_1 and v_2 into MATLAB as vectors v1 and v2, respectively. To find a basis containing scalar multiples of v_1 and v_2 , use commands

$$\mathbf{A} = [\mathbf{v1} \ \mathbf{v2} \ \mathbf{eye}(4)]$$
$$\mathbf{rref}(\mathbf{A})$$

The display indicates that the first four columns of A form a basis for R^4 . The command S = A(:,1:4) produces the matrix with those columns. Type the command

T = gschmidt(S)

The display is

=			
0.5774	-0.3780	0.7237	0
0	0.3780	0.1974	0.9045
0.5774	0.7559	-0.0658	-0.3015
-0.5774	0.3780	0.6580	-0.3015
	0.5774 0 0.5774	0.5774 -0.3780 0 0.3780 0.5774 0.7559	0.5774 -0.3780 0.7237 0 0.3780 0.1974 0.5774 0.7559 -0.0658

Column 1 of T is $\left(\frac{1}{\|\boldsymbol{v}_1\|}\right) \boldsymbol{v}_1$ and column 2 of T is $\left(\frac{1}{\|\boldsymbol{v}_2\|}\right) \boldsymbol{v}_2$, hence the columns of T form the desired orthonormal basis for R^4 .

Explain what to do if rref(A) did not indicate that the first four columns of A form a basis for \mathbb{R}^4 .

18

LAB 10

Exercises 10.3

1. Let $\mathbf{V} = R^3$ with the standard inner product and let

$$\mathbf{S} = \{\boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_3}\} = \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}.$$

1.20.20

Use routine **gschmidt** in MATLAB to obtain an orthonormal basis **T** and then find the coordinates of $\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ relative to **T**. Record the orthonormal basis and the coordinates of \boldsymbol{x} below.

2. Let $\mathbf{V} = R^4$ with the standard inner product and let

$$\mathbf{S} = \{ \boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_3}, \boldsymbol{u_4} \} = \left\{ \begin{bmatrix} -1\\2\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} \right\}$$

Use routine **gschmidt** in MATLAB to obtain an orthonormal basis **T** and then find the coordinates of $\boldsymbol{x} = \begin{bmatrix} 4 \\ 0 \\ 2 \\ 1 \end{bmatrix}$ relative to **T**. Record the orthonormal basis and the coordinates of \boldsymbol{x} below.

3. Let $\mathbf{V} = R^4$ with the standard inner product and let

LAB 10

19

20

a) Is S an

$$\mathbf{S} = \{\boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_3}, \boldsymbol{u_4}\} = \left\{ \begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \end{bmatrix}, \begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \end{bmatrix}, \begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \end{bmatrix}, \begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \end{bmatrix}, \begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \end{bmatrix}, \begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \end{bmatrix}, \begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \end{bmatrix} \right\}.$$
Is S an orthonormal basis? Circle one: Yes No
Explain your answer.

LAB 10

b) In MATLAB form the matrix T whose columns are the vectors in S. Generate a random vector in \mathbb{R}^4 using command $\mathbf{x} = \operatorname{rand}(4,1)$ and then compute $|| \mathbf{x} ||$ and $|| \mathbf{T} \mathbf{x} ||$. How are the values of the norms related? Repeat the experiment for another arbitrary vector.

and the second standard and the second of the second standards and the

A' = ____

 $\mathbf{C} = -$

4. Let $v_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$. In MATLAB form the matrix $\mathbf{A} = [\mathbf{v1} \ \mathbf{v2}]$ and then use command **gschmidt(A)**. Explain the meaning of the display generated.

5. Let $\boldsymbol{A} = \begin{bmatrix} 1 & i & 0 \\ i & 0 & 1 \end{bmatrix}$.

a) In MATLAB use command A'. Record the result.

- **b)** In MATLAB use command $\mathbf{C} = \mathbf{A}' * \mathbf{A}$. Record the result.
- c) What is the relation between C and C'?

d) Experiment with other complex matrices A to confirm or reject your answer in part c).

Circle one:

confirmed

not confirmed.

YES

NO

21

6. A complex matrix A is called Hermitian if it is equal to its conjugate transpose. The command A' gives the conjugate transpose in MATLAB.

a) How can you use MATLAB to determine if the matrix A below is Hermitian?

$$oldsymbol{A}=\left[egin{array}{cc} 2&3-3i\ 3+3i&5 \end{array}
ight]$$

b) Compute r = x' * A * x for the complex vector below.

 $oldsymbol{x} = \left[egin{array}{c} i \ 1-i \end{array}
ight] egin{array}{c} oldsymbol{r} = & & \ \end{array}$

Is r a real number? (Circle one:)

c) Experiment with other complex vectors \boldsymbol{x} to determine whether $\boldsymbol{x}' \boldsymbol{A} \boldsymbol{x}$ will always be a real number. (Circle one:)

Always a real number for this matrix **A**. Not always a real number.

d) Experiment with another Hermitian matrix A and arbitrary vector x to see if r = x' * A * x is always a real number.

(Circle one:) Always a real number. Not always a real number.

7. Let $\mathbf{V} = R^4$ with the standard inner product and let

$$\boldsymbol{v_1} = \begin{bmatrix} 3\\1\\2\\0 \end{bmatrix}, \quad \boldsymbol{v_2} = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}, \quad \boldsymbol{v_3} = \begin{bmatrix} 0\\-2\\1\\-1 \end{bmatrix}.$$

a) Find an orthonormal basis for R^4 containing scalar multiples of the vectors v_1 and v_2 . Record your result below.

b) Find an orthonormal basis for R^4 containing scalar multiples of the vectors v_1 , v_2 , v_3 . Record your result below.

and the **second second** of the second s

e e **il li anti**ne de la seguita de la diversión de la seguita de la seguita de la seguita de la seguita de la s La seguita de la seguita de

<< NOTES; COMMENTS; IDEAS >>

na an an ann an Anna an

이 사이가 제1998년 18일(1999년 4월) 이 사이가 속에서 가지 않는 것을 것을 하는 것

na an anna an anna an Air ann an Air an A Air an Air

[1] A set of the se

	1997 - 1997 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	ہ 1 میں کا ا	 and the second sec	
			1 - A4	

કડું તેમેળને <mark>સમ વાર્ટ્સના વિસ્તાર વ</mark>િંગ ગયે આવ્યોના પશુ સાળવા પ્રકાર કરવાં ગયે પુંચુલના ગયું પ્રાપ્ય પ્ર જિલ્લામાં આવ્યું આવ્યું છે. સમય આવ્યું કે કે જેવા