Computer Project 1. Nonlinear Springs

Goal: Investigate the behavior of nonlinear springs.

Tools needed: `ode45`, `plot`

Description: For certain (nonlinear) spring-mass systems, the spring force is not given by Hooke’s Law but instead satisfies

\[F_{\text{spring}} = ku + \epsilon u^3, \]

where \(k > 0 \) is the spring constant and \(\epsilon \) is small but may be positive or negative and represents the “strength” of the spring (\(\epsilon = 0 \) gives Hooke’s Law). The spring is called a *hard spring* if \(\epsilon > 0 \) and a *soft spring* if \(\epsilon < 0 \).

Questions: Suppose a nonlinear spring-mass system satisfies the initial value problem

\[
\begin{align*}
 u'' + u + \epsilon u^3 &= 0 \\
 u(0) &= 0, \quad u'(0) = 1
\end{align*}
\]

Use `ode45` and `plot` to answer the following:

1. Let \(\epsilon = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 \) and plot the solutions of the above initial value problem for \(0 \leq t \leq 20 \). Estimate the amplitude of the spring. Experiment with various \(\epsilon > 0 \). What appears to happen to the amplitude as \(\epsilon \to \infty \)? Let \(\mu^+ \) denote the first time the mass reaches equilibrium after \(t = 0 \). Estimate \(\mu^+ \) when \(\epsilon = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 \). What appears to happen to \(\mu^+ \) as \(\epsilon \to \infty \)?

2. Let \(\epsilon = -0.1, -0.2, -0.3, -0.4 \) and plot the solutions of the above initial value problem for \(0 \leq t \leq 20 \). Estimate the amplitude of the spring. Experiment with various \(\epsilon < 0 \). What appears to happen to the amplitude as \(\epsilon \to -\infty \)? Let \(\mu^- \) denote the first time the mass reaches equilibrium after \(t = 0 \). Estimate \(\mu^- \) when \(\epsilon = -0.1, -0.2, -0.3, -0.4 \). What appears to happen to \(\mu^- \) as \(\epsilon \to -\infty \)?

3. Given that a certain nonlinear hard spring satisfies the initial value problem

\[
\begin{align*}
 u'' + \frac{1}{5} u' + (u + \frac{1}{5} u^3) &= \cos \omega t \\
 u(0) &= 0, \quad u'(0) = 0
\end{align*}
\]

plot the solution \(u(t) \) over the interval \(0 \leq t \leq 60 \) for \(\omega = 0.5, 0.7, 1.0, 1.3, 2.0 \). Continue to experiment with various values of \(\omega \), where \(0.5 \leq \omega \leq 2.0 \), to find a value \(\omega^* \) for which \(|u(t)| \) is largest over the interval \(40 \leq t \leq 60 \).