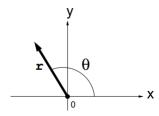
Study Guide # 1

1. Vectors in \mathbb{R}^2 and \mathbb{R}^3

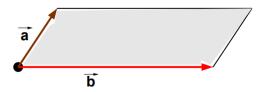
- (a) $\vec{\mathbf{v}} = \langle a, b, c \rangle = a \vec{\mathbf{i}} + b \vec{\mathbf{j}} + c \vec{\mathbf{k}}$; vector addition and subtraction geometrically using parallelograms spanned by $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$; length or magnitude of $\vec{\mathbf{v}} = \langle a, b, c \rangle$, $|\vec{\mathbf{v}}| = \sqrt{a^2 + b^2 + c^2}$; directed vector from $P_0(x_0, y_0, z_0)$ to $P_1(x_1, y_1, z_1)$ given by $\vec{\mathbf{v}} = P_0P_1 = P_1 P_0 = \langle x_1 x_0, y_1 y_0, z_1 z_0 \rangle$.
- (b) Dot (or inner) product of $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$: $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1b_1 + a_2b_2 + a_3b_3$; properties of dot product; useful identity: $\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} = |\vec{\mathbf{a}}|^2$; angle between two vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$: $\cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}$; $\vec{\mathbf{a}} \perp \vec{\mathbf{b}}$ if and only if $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$; the vector in \mathbb{R}^2 with length r with angle θ is $\vec{\mathbf{v}} = \langle r \cos \theta, r \sin \theta \rangle$:



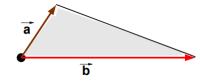
(c) Cross product (only for vectors in \mathbb{R}^3):

$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \vec{\mathbf{i}} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \vec{\mathbf{j}} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \vec{\mathbf{k}}$$

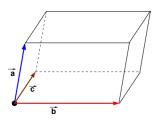
properties of cross products; $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ is <u>perpendicular</u> (orthogonal or normal) to both $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$; area of parallelogram spanned by $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $A = |\vec{\mathbf{a}} \times \vec{\mathbf{b}}|$:



the area of the triangle spanned is $A = \frac{1}{2} |\vec{\mathbf{a}} \times \vec{\mathbf{b}}|$:



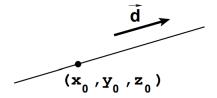
Volume of the parallelopiped spanned by $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ is $V = |\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}})|$:



2. Equation of a line L through $P_0(x_0, y_0, z_0)$ with direction vector $\vec{\mathbf{d}} = \langle a, b, c \rangle$:

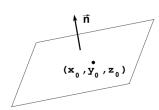
Vector Form: $\vec{\mathbf{r}}(t) = \langle x_0, y_0, z_0 \rangle + t \, \vec{\mathbf{d}}.$

Parametric Form:
$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$



Symmetric Form: $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$. (If say b = 0, then $\frac{x-x_0}{a} = \frac{z-z_0}{c}$, $y = y_0$.)

3. Equation of the plane through the point $P_0(x_0, y_0, z_0)$ and perpendicular to the vector $\vec{\mathbf{n}} = \langle a, b, c \rangle$ ($\vec{\mathbf{n}}$ is a *normal vector* to the plane) is $\langle (x - x_0), (y - y_0), (z - z_0) \rangle \cdot \vec{\mathbf{n}} = 0$; Sketching planes (consider x, y, z intercepts).



4. Quadric surfaces (can sketch them by considering various *traces*, i.e., curves resulting from the intersection of the surface with planes x = k, y = k and/or z = k); some generic equations have the form:

(a) Ellipsoid:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(b) Elliptic Paraboloid:
$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

(c) Hyperbolic Paraboloid (Saddle):
$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

(d) Cone:
$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

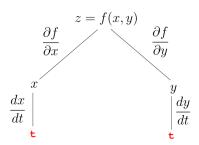
(e) Hyperboloid of One Sheet:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

(f) Hyperboloid of Two Sheets:
$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

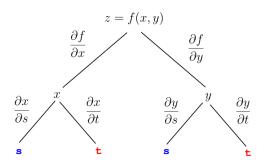
- **5.** Vector-valued functions $\vec{\mathbf{r}}(t) = \langle f(t), g(t), h(t) \rangle$; tangent vector $\vec{\mathbf{r}}'(t)$ for smooth curves, unit tangent vector $\vec{\mathbf{T}}(t) = \frac{\vec{\mathbf{r}}'(t)}{|\vec{\mathbf{r}}'(t)|}$; principal unit normal vector $\vec{\mathbf{N}}(t) = \frac{\vec{\mathbf{T}}'(t)}{|\vec{\mathbf{T}}'(t)|}$; differentiation rules for vector functions, including:
 - (i) $\{\phi(t)\,\vec{\mathbf{v}}(t)\}' = \phi(t)\,\vec{\mathbf{v}}'(t) + \phi'(t)\,\vec{\mathbf{v}}(t)$, where $\phi(t)$ is a real-valued function
 - (ii) $(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})' = \vec{\mathbf{u}} \cdot \vec{\mathbf{v}}' + \vec{\mathbf{u}}' \cdot \vec{\mathbf{v}}$
 - (iii) $(\vec{\mathbf{u}} \times \vec{\mathbf{v}})' = \vec{\mathbf{u}} \times \vec{\mathbf{v}}' + \vec{\mathbf{u}}' \times \vec{\mathbf{v}}$
 - (iv) $\{\vec{\mathbf{v}}(\phi(t))\}' = \phi'(t) \vec{\mathbf{v}}'(\phi(t))$, where $\phi(t)$ is a real-valued function
- **6.** Integrals of vector functions $\int \vec{\mathbf{r}}(t) dt = \left\langle \int f(t) dt, \int g(t) dt, \int h(t) dt \right\rangle$; arc length of curve parameterized by $\vec{\mathbf{r}}(t)$ is $L = \int_a^b |\vec{\mathbf{r}}'(t)| dt$; arc length function $s(t) = \int_a^t |\vec{\mathbf{r}}'(u)| du$; reparameterize by arc length: $\vec{\boldsymbol{\sigma}}(s) = \vec{\mathbf{r}}(t(s))$, where t(s) is the inverse of the arc length function s(t); the curvature of a curve parameterized by $\vec{\mathbf{r}}(t)$ is $\kappa = \frac{|\vec{\mathbf{T}}'(t)|}{|\vec{\mathbf{r}}'(t)|}$. Note: $\sqrt{\alpha^2} = |\alpha|$.
- 7. $\vec{\mathbf{r}}(t) = \text{position of a particle}, \ \vec{\mathbf{r}}'(t) = \vec{\mathbf{v}}(t) = \text{velocity}; \ \vec{\mathbf{a}}(t) = \vec{\mathbf{v}}'(t) = \vec{\mathbf{r}}''(t) = \text{acceleration}; \ |\vec{\mathbf{r}}'(t)| = |\vec{\mathbf{v}}(t)| = \text{speed}; \ \text{Newton's } 2^{nd} \ \text{Law:} \ \vec{\mathbf{F}} = m \ \vec{\mathbf{a}}.$
- **8.** Domain and range of a function f(x,y) and f(x,y,z); level curves (or contour curves) of f(x,y) are the curves f(x,y)=k; using level curves to sketch surfaces; level surfaces of f(x,y,z) are the surfaces f(x,y,z)=k.
- **9.** Limits of functions f(x, y) and f(x, y, z); limit of f(x, y) does not exist if different approaches to (a, b) yield different limits; continuity.
- 10. Partial derivatives $\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) f(x,y)}{h}$, $\frac{\partial f}{\partial y}(x,y) = f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) f(x,y)}{h}$; higher order derivatives: $f_{xy} = \frac{\partial^2 f}{\partial y \partial x}$, $f_{yy} = \frac{\partial^2 f}{\partial y^2}$, $f_{yx} = \frac{\partial^2 f}{\partial x \partial y}$, etc; mixed partials.
- **11.** Equation of the tangent plane to the graph of z = f(x, y) at (x_0, y_0, z_0) is given by $z z_0 = f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0)$.
- 12. Total differential for z = f(x,y) is $dz = df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$; total differential for w = f(x,y,z) is $dw = df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$; linear approximation for z = f(x,y) is given by $\Delta z \approx dz$, i.e., $f(x + \Delta x, y + \Delta y) f(x,y) \approx \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$, where $\Delta x = dx$, $\Delta y = dy$; Linearization of f(x,y) at (a,b) is given by $L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$; $L(x,y) \approx f(x,y)$ near (a,b).

13. <u>CHAIN RULE</u>; different forms of the Chain Rule: Form 1, Form 2; CHAIN RULE (GENERAL FORM): Tree diagrams. For example:

(a) If
$$z = f(x, y)$$
 and $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$, then $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$:



(b) If
$$z = f(x, y)$$
 and $\begin{cases} x = x(s, t) \\ y = y(s, t) \end{cases}$, then
$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \text{and} \quad \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} :$$



etc.....

14. Implicit Differentiation:

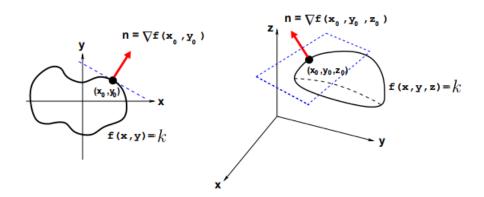
Part I: If F(x,y) = 0 defines y as function of x (i.e., y = y(x)), then to compute $\frac{dy}{dx}$, differentiate both sides of the equation F(x,y) = 0 w.r.t. x and solve for $\frac{dy}{dx}$.

If F(x,y,z)=0 defines z as function of x and y (i.e. z=z(x,y)), then to compute $\frac{\partial z}{\partial x}$, differentiate the equation F(x,y,z)=0 w.r.t. x (hold y fixed) and solve for $\frac{\partial z}{\partial x}$. For $\frac{\partial z}{\partial y}$, differentiate the equation F(x,y,z)=0 w.r.t. y (hold x fixed) and solve for $\frac{\partial z}{\partial y}$.

Part II: If
$$F(x,y) = 0$$
 defines y as function of $x \implies \frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$;

while if
$$F(x, y, z) = 0$$
 defines z as function of x and $y \implies \frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$ and $\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$.

15. Gradient vector for f(x,y): $\nabla f(x,y) = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle$, properties of gradients; gradient points in direction of maximum rate of increase of f, maximum rate of increase is $|\nabla f|$; $\nabla f(x_0, y_0) \perp$ level curve f(x,y) = k and, in the case of 3 variables, $\nabla f(x_0, y_0, z_0) \perp$ level surface f(x,y,z) = k:



- **16.** Directional derivative of f(x,y) at (x_0,y_0) in the direction $\vec{\mathbf{u}}: D_{\vec{\mathbf{u}}}f(x_0,y_0) = \nabla f(x_0,y_0) \cdot \vec{\mathbf{u}}$, where $\vec{\mathbf{u}}$ must be a <u>unit</u> vector; tangent planes to level surfaces f(x,y,z) = k (a normal vector at (x_0,y_0,z_0) is $\vec{\mathbf{n}} = \nabla f(x_0,y_0,z_0)$).
- 17. Relative/local extrema; critical points (points where $\nabla f = \vec{0}$ or ∇f does not exist).
- **18.** $\underline{2^{nd}}$ Derivatives Test: Suppose the 2^{nd} partials of f(x,y) are continuous in a disk with center (a,b) and $\nabla f(a,b) = \vec{\mathbf{0}}$. Let $D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}_{(a,b)}$.
 - (a) If D > 0 and $f_{xx}(a, b) > 0 \implies f(a, b)$ is a local minimum value.
 - (b) If D > 0 and $f_{xx}(a, b) < 0 \implies f(a, b)$ is a local maximum value.
 - (c) If $D < 0 \Longrightarrow f(a, b)$ is a not a local min or local max value. So (a, b) is a saddle point of f.

If D = 0 (or if $\nabla f(a, b)$ does not exist or f has more than 2 variables) the test gives no information and you need to do something else to determine if a relative extremum exists.