MA265 - HANDWRITTEN HOMEWORK 26

1. Express the quotient $z=\frac{1+3 i}{6+8 i}$ as $z=r e^{i \theta}$.
2. Express $z=10 e^{i \frac{\pi}{6}}$ as $z=a+i b$.
3. Find all values of r such that the complex number $r e^{i \frac{\pi}{4}}=a+i b$ with a and b integers.
4. Find all real and complex roots of the equation $z^{10}=9^{10}$.
5. Find all real and complex solutions to the equation $x^{4}-2 x^{2}+1=0$
6. Find all real and complex eigenvalues of the matrice

$$
A=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 1 & -1 \\
0 & 5 & -3
\end{array}\right]
$$

7. Show that if $p(x)$ is a polynomial with real coefficients and z is a solution of $p(z)=0$, then \bar{z} is also satisfies $p(\bar{z})=0$.
8. One can identify complex numbers and vector on the plane \mathbb{R}^{2} as $a+i b \equiv(a, b)$. Find the matrix $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$ such that, using this identification,

$$
e^{i \phi}(a+i b) \equiv\left(B\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)^{T}
$$

where T denotes the transpose. Now use this to explain geometrically the action of the matrix B on the vector $\left[\begin{array}{l}a \\ b\end{array}\right]$.

