MA 16600 Study Guide - Exam 1

- (1) Distance formula $D = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$; equation of a sphere with center (h, k, l) and radius r: $(x h)^2 + (y k)^2 + (z l)^2 = r^2$.
- (2) Vectors in \mathbb{R}^2 and \mathbb{R}^3 ; displacement vectors \overrightarrow{PQ} ; vector arithmetic; components; Standard basis vectors $\vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}}$, hence $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle = a_1 \vec{\mathbf{i}} + a_2 \vec{\mathbf{j}} + a_3 \vec{\mathbf{k}}$; length (magnitude) of a vector $|\vec{\mathbf{a}}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$; dot (or inner) product of $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$: $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1 b_1 + a_2 b_2 + a_3 b_3$; properties of dot products.
- (3) Angle between vectors: $\cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}$:

Perpendicular (orthogonal) vectors; direction cosines: $\cos \alpha = \frac{a_1}{|\vec{\mathbf{a}}|}, \cos \beta = \frac{a_2}{|\vec{\mathbf{a}}|}, \cos \gamma = \frac{a_3}{|\vec{\mathbf{a}}|}, \text{ direction angles } \alpha, \beta, \gamma.$

(4) Vector projection of $\vec{\mathbf{b}}$ onto $\vec{\mathbf{a}}$: $\operatorname{proj}_{\vec{\mathbf{a}}} \vec{\mathbf{b}} = \left(\frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}|}\right) \frac{\vec{\mathbf{a}}}{|\vec{\mathbf{a}}|}$; Scalar projection of $\vec{\mathbf{b}}$ onto $\vec{\mathbf{a}}$: $\operatorname{comp}_{\vec{\mathbf{a}}} \vec{\mathbf{b}} = \left(\frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}|}\right)$;

Work done by constant force is $W = \vec{\mathbf{F}} \cdot \vec{\mathbf{D}}$.

(5) Cross product: $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ (defined <u>only</u> for vectors in \mathbb{R}^3); $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \perp \vec{\mathbf{a}}$ and

 $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \perp \vec{\mathbf{b}}$; other properties of cross products; $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin \theta$;

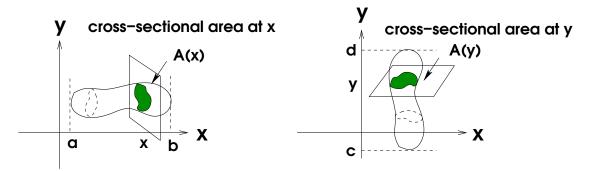
 $A = |\vec{\mathbf{a}} \times \vec{\mathbf{b}}| =$ area of parallelogram spanned by $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$;

 $A = \frac{1}{2} |\vec{\mathbf{a}} \times \vec{\mathbf{b}}| =$ area of triangle spanned by $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$.

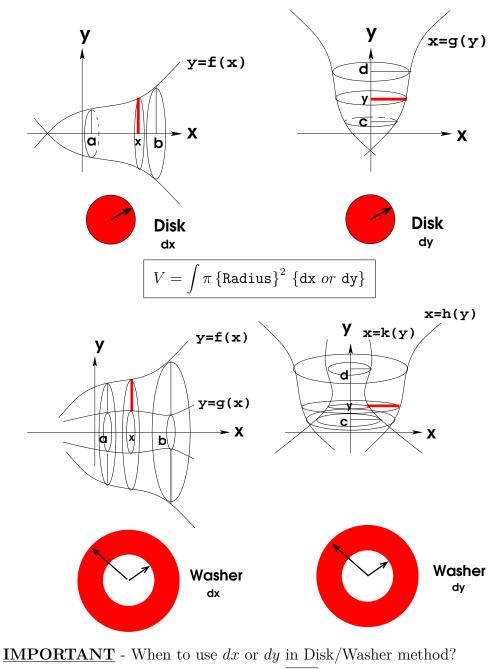
 $V = |\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}})| =$ volume of parallelepiped spanned by $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$:

$$\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

- (6) <u>Applications of Integration</u>
 - (a) <u>Areas Between Curves</u>: $A = \int_{a}^{b} \{f(x) g(x)\} dx$ or $A = \int_{c}^{d} \{h(y) k(y)\} dy$: **Note**: If curves cross, you need to break up into several integrals.
 - (b) <u>Volumes of Solids by Cross-sectional Areas</u>: $V = \int_{a}^{b} A(x) dx$, or $V = \int_{c}^{d} A(y) dy$, where A(x) = area of the cross-section of the solid with a plane $\perp x$ -axis at the point x, or A(y) = area of the cross-section of the solid with a plane $\perp y$ -axis at the point y:

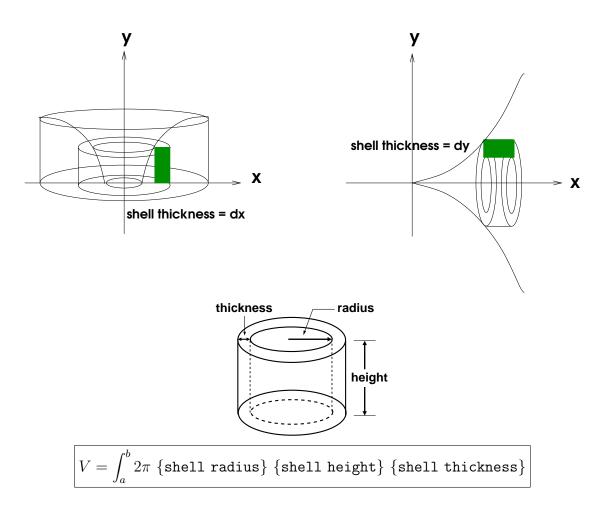


(c) Volumes of Solids of Revolution by DISK METHOD OR WASHER METHOD: Use Disk Method or Washer Method when slices of area are <u>perpendicular</u> to axis of rotation. In either case, the cross-section is always a disk/washer :



- (i) If cross-sections are $\perp x$ axis, use dx.
- (ii) If cross-sections are $\perp y$ axis, use dy

(d) Volumes of Solids of Revolution by CYLINDRICAL SHELLS METHOD: Use Cyclindrical Shells Method when slices of area are <u>parallel</u> to axis of rotation. Shell thickness is always either dx or dy.



(e) If force F is constant and distance object moved along a line is d, then Work is W = Fd. Here are the English and Metric systems compared:

Quantity	English System	Metric System
Mass m	slug (= $lb-sec^2/ft$)	kilogram kg
Force F	pounds (lbs)	Newtons $N \ (= \text{kg-m/sec}^2)$
Distance d	feet	meters m
Work W	ft-lbs	Joules $J \ (= \text{kg-m}^2/\text{sec}^2)$
g	32 ft/sec^2	9.8 m/sec^2

If the force is variable, say f(x), then Work $W = \int_{a}^{b} f(x) dx$; Hooke's Law: $f_{s}(x) = kx$; work done compressing/stretching springs, emptying tanks, pulling up chains.

(f) Average of a function over an interval: $f_{ave} = \frac{1}{b-a} \int_a^b f(x) \, dx$;

Mean Value Thm for Integrals: $f_{ave} = \frac{1}{b-a} \int_a^b f(x) \, dx = f(c)$, for some $a \le c \le b$.

(7) Techniques of Integration

(a) <u>Simple Substitution</u>: $\int_a^b f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$ (let u = g(x))

(b) Integration by Parts:
$$\int u \, dv = uv - \int v \, du$$

- (c) <u>Trig Integrals</u>: Integrals of the type $\int \sin^m x \cos^n x \, dx$ and $\int \tan^m x \sec^n x \, dx$ Some useful trig identities: (i) $\sin^2 \theta + \cos^2 \theta = 1$
 - (ii) $\sin^2 \theta = \frac{1 \cos 2\theta}{2}$ and $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$
 - (iii) $\sin 2\theta = 2\sin\theta\,\cos\theta$
 - (iv) $\tan^2 \theta + 1 = \sec^2 \theta$

Some useful trig integrals:

- (i) $\int \tan u \, du = \ln |\sec u| + C$ (ii) $\int \sec u \, du = \ln |\sec u + \tan u| + C$
- (d) <u>Trig integrals of the form</u>: $\int \sin mx \sin nx \, dx$, $\int \cos mx \cos nx \, dx$, $\int \sin mx \cos nx \, dx$, $\int \sin mx \cos nx \, dx$,

$$\sin A \sin B = \frac{1}{2} \{ \cos(A - B) - \cos(A + B) \}$$
$$\cos A \cos B = \frac{1}{2} \{ \cos(A - B) + \cos(A + B) \}$$
$$\sin A \cos B = \frac{1}{2} \{ \sin(A - B) + \sin(A + B) \}$$

(8) Suggested Exercises (at the end of the corresponding section):

Section 12.1: 17, 18, 19, 20, 31
Section 12.3: 15, 16, 23, 24, 27, 29, 30, 39, 40
Section 12.4: 4,5,6,27, 28, 35, 36, 27
Section 6.1: 13, 14, 17, 20, 22
Section 6.2: 1,3,4,6,8,10, 11, 12
Section 6.4: 7, 8, 9, 20, 21
Section 7.1: 3,4,5, 11, 15, 51, 52
Section 7.2: 1, 2, 4, 5, 11, 16, 22, 25, 28, 29

Acknowledgement: These notes are due to Prof. Johnny Brown.