MA 16600
 $\underline{\underline{\text { Study Guide - Exam } 1}}$

(1) Distance formula $D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$; equation of a sphere with center (h, k, l) and radius $r:(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}$.
(2) Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}; displacement vectors $\overrightarrow{P Q}$; vector arithmetic; components; Standard basis vectors $\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}}$, hence $\overrightarrow{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle=a_{1} \overrightarrow{\mathbf{i}}+a_{2} \overrightarrow{\mathbf{j}}+a_{3} \overrightarrow{\mathbf{k}}$; length (magnitude) of a vector $|\overrightarrow{\mathbf{a}}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$; dot (or inner) product of $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$: $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$; properties of dot products.
(3) Angle between vectors: $\cos \theta=\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}$;

Perpendicular (orthogonal) vectors; direction cosines: $\cos \alpha=\frac{a_{1}}{|\overrightarrow{\mathbf{a}}|}, \cos \beta=\frac{a_{2}}{|\overrightarrow{\mathbf{a}}|}, \cos \gamma=\frac{a_{3}}{|\overrightarrow{\mathbf{a}}|}$, direction angles α, β, γ.
(4) Vector projection of $\overrightarrow{\mathbf{b}}$ onto $\overrightarrow{\mathbf{a}}: \quad \operatorname{proj}_{\mathbf{a}} \overrightarrow{\mathbf{b}}=\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}\right) \frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}$

Scalar projection of $\overrightarrow{\mathbf{b}}$ onto $\overrightarrow{\mathbf{a}}: \quad \operatorname{comp}_{\overrightarrow{\mathbf{a}}} \overrightarrow{\mathbf{b}}=\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}\right)$;
Work done by constant force is $W=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{D}}$.
(5) Cross product: $\quad \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ccc}\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$ (defined only for vectors in $\left.\mathbb{R}^{3}\right) ;(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \perp \overrightarrow{\mathbf{a}}$ and $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \perp \overrightarrow{\mathbf{b}}$; other properties of cross products; $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta ;$
$A=|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=$ area of parallelogram spanned by $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$;
$A=\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=$ area of triangle spanned by $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$.
$V=|\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})|=$ volume of parallelepiped spanned by $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}:$

$$
\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(6) Applications of Integration

(a) Areas Between Curves: $A=\int_{a}^{b}\{f(x)-g(x)\} d x$ or $A=\int_{c}^{d}\{h(y)-k(y)\} d y$:

Note: If curves cross, you need to break up into several integrals.
(b) Volumes of Solids by Cross-sectional Areas: $V=\int_{a}^{b} A(x) d x$, or $V=\int_{c}^{d} A(y) d y$, where $A(x)=$ area of the cross-section of the solid with a plane $\perp x$-axis at the point x, or $A(y)=$ area of the cross-section of the solid with a plane $\perp y$-axis at the point y :

(c) Volumes of Solids of Revolution by Disk Method or Washer Method: Use Disk Method or Washer Method when slices of area are perpendicular to axis of rotation. In either case, the cross-section is always a disk/washer :

$$
V=\int \pi\{\text { Radius }\}^{2}\{\mathrm{dx} \text { or } \mathrm{dy}\}
$$

IMPORTANT - When to use $d x$ or $d y$ in Disk/Washer method?
(i) If cross-sections are $\perp x$ - axis, use $d x$.
(ii) If cross-sections are $\perp y$ - axis, use $d y$.
(d) Volumes of Solids of Revolution by Cylindrical Shells Method: Use Cyclindrical Shells Method when slices of area are parallel to axis of rotation. Shell thickness is always either $d x$ or $d y$.

$$
V=\int_{a}^{b} 2 \pi\{\text { shell radius }\}\{\text { shell height }\}\{\text { shell thickness }\}
$$

(e) If force F is constant and distance object moved along a line is d, then Work is $W=F d$. Here are the English and Metric systems compared:

Quantity	English System	Metric System
Mass m	slug $\left(=\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{ft}\right)$	kilogram kg
Force F	pounds (lbs)	Newtons $N\left(=\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{2}\right)$
Distance d	feet	meters m
Work W	ft-lbs	Joules $J\left(=\mathrm{kg}-\mathrm{m}^{2} / \mathrm{sec}^{2}\right)$
g	$32 \mathrm{ft} / \mathrm{sec}^{2}$	$9.8 \mathrm{~m} / \mathrm{sec}^{2}$

If the force is variable, say $f(x)$, then Work $W=\int_{a}^{b} f(x) d x$; Hooke's Law: $f_{s}(x)=k x$; work done compressing/stretching springs, emptying tanks, pulling up chains.
(f) Average of a function over an interval: $f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$;

Mean Value Thm for Integrals: $f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x=f(c)$, for some $a \leq c \leq b$.
(a) Simple Substitution: $\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u$ (let $u=g(x)$)
(b) Integration by Parts: $\int u d v=u v-\int v d u$
(c) Trig Integrals: Integrals of the type $\int \sin ^{m} x \cos ^{n} x d x$ and $\int \tan ^{m} x \sec ^{n} x d x$

Some useful trig identities:
(i) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(ii) $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$ and $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$
(iii) $\sin 2 \theta=2 \sin \theta \cos \theta$
(iv) $\tan ^{2} \theta+1=\sec ^{2} \theta$

Some useful trig integrals:
(i) $\int \tan u d u=\ln |\sec u|+C$
(ii) $\int \sec u d u=\ln |\sec u+\tan u|+C$
(d) Trig integrals of the form: $\int \sin m x \sin n x d x, \int \cos m x \cos n x d x, \int \sin m x \cos n x d x$, use these trig identities:

$$
\begin{aligned}
& \sin A \sin B=\frac{1}{2}\{\cos (A-B)-\cos (A+B)\} \\
& \cos A \cos B=\frac{1}{2}\{\cos (A-B)+\cos (A+B)\} \\
& \sin A \cos B=\frac{1}{2}\{\sin (A-B)+\sin (A+B)\}
\end{aligned}
$$

(8) Suggested Exercises (at the end of the corresponding section):

Section 12.1: 17, 18, 19, 20, 31
Section 12.3: 15, 16, 23, 24, 27, 29, 30, 39, 40
Section 12.4: 4,5,6,27, 28, 35, 36, 27
Section 6.1: 13, 14, 17, 20, 22
Section 6.2: 1,3,4,6,8,10, 11, 12 Section 6.3: 3,4,9, 10, 15, 16
Section 6.4: 7, 8, 9, 20, 21
Section 7.1: 3,4,5, 11, 15, 51, 52
Section 7.2: 1, 2, 4, 5, 11, 16, 22, 25, 28, 29
Acknowledgement: These notes are due to Prof. Johnny Brown.

