MA 16600

Study Guide For Exam 2- Lessons 11 to 20, Excluding 15

- (1) <u>Techniques of Integration</u> This was on Exam I, but it is important to review it to be able to do the integrals that appear after trigonometric substitutions.
 - (a) <u>Trig Integrals</u>: Integrals of the type $\int \sin^m x \cos^n x \, dx$ and $\int \tan^m x \sec^n x \, dx$ Some useful trig identities:

(i)
$$\sin^2 \theta + \cos^2 \theta = 1$$
 and $\tan^2 \theta + 1 = \sec^2 \theta$

(ii)
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$
 and $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$

(iii)
$$\sin 2\theta = 2\sin \theta \cos \theta$$

Some useful trig integrals:

(i)
$$\int \tan u \ du = \ln|\sec u| + C$$

(ii)
$$\int \sec u \ du = \ln|\sec u + \tan u| + C$$

(b) Trig integrals of the form: $\int \sin mx \sin nx \, dx$, $\int \cos mx \cos nx \, dx$, $\int \sin mx \cos nx \, dx$, use these trig identities:

$$\sin A \sin B = \frac{1}{2} \{\cos(A - B) - \cos(A + B)\}$$

$$\cos A \cos B = \frac{1}{2} \{\cos(A - B) + \cos(A + B)\}$$

$$\sin A \cos B = \frac{1}{2} \{ \sin(A - B) + \sin(A + B) \}$$

(c) Trigonometric Substitutions:

Expression*	Trig Substitution	Identity needed	Square root
$\sqrt{a^2 - x^2}$	$x = a\sin\theta$	$a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$	$\sqrt{a^2 - x^2} = a\cos\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$a^2 + a^2 \tan^2 \theta = a^2 \sec^2 \theta$	$\sqrt{a^2 + x^2} = a \sec \theta$
$\sqrt{x^2 - a^2}$	$x = a \sec \theta$	$a^2 \sec^2 \theta - a^2 = a^2 \tan^2 \theta$	$\sqrt{x^2 - a^2} = a \tan \theta$

^{*} Or powers of these expressions.

- (2) Integration via Partial Fractions: Use for (proper) rational functions $\frac{R(x)}{O(x)}$; If $\deg R(x) > \deg Q(x)$, i.e. rational function is improper, then do polynomial division before using partial fractions: P(x) = S(x) Q(x) + R(x) where $\deg R(x) < \deg Q(x)$.
- (3) Improper integrals: Type I (unbounded intervals) $\int_a^\infty f(x) dx$, $\int_a^b f(x) dx$ or $\int_a^\infty f(x) dx$; Improper integrals of **Type II** (discontinuous integrand at one or both endpoints) $\int_{a}^{b} f(x) dx$. $\int_{0}^{1} \frac{1}{r^{p}} dx \text{ converges if and only if } p < 1$ $\int_{1}^{\infty} \frac{1}{r^{p}} dx \text{ converges if and only if } p > 1.$

Comparison Theorem: Let f(x) and g(x) be continuous for $x \ge a$.

- (a) If $0 \le f(x) \le g(x)$ for $x \ge a$ and $\int_a^\infty g(x) \, dx$ converges $\Longrightarrow \int_a^\infty f(x) \, dx$ also converges. (b) If $0 \le g(x) \le f(x)$ for $x \ge a$ and $\int_a^\infty g(x) \, dx$ diverges $\Longrightarrow \int_a^\infty f(x) \, dx$ also diverges.
- (4) Arc length $L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$ or $L = \int_{c}^{d} \sqrt{1 + (g'(y))^2} dy$.
- (5) Surface area of revolution: $S = \int 2\pi \{\text{ribbon radius}\} ds$ or $S = \int 2\pi r ds$, where $ds = \sqrt{1 + (f'(x))^2} dx$ or $ds = \sqrt{1 + (g'(y))^2} dy$.

(6) Center of mass of a system of discrete masses m_1, m_2, \dots, m_n located at $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ is $(\overline{x}, \overline{y})$, where

$$\overline{x} = \frac{M_y}{M} = \frac{\sum_{k=1}^n m_k x_k}{\sum_{k=1}^n m_k}, \qquad \overline{y} = \frac{M_x}{M} = \frac{\sum_{k=1}^n m_k y_k}{\sum_{k=1}^n m_k}$$

 M_x = moment of system about the x-axis; M_y = moment of system about the y-axis; M = total mass of the system.

- (7) Moments, center of mass (center of mass = centroid if density ρ = constant).
 - (a) Lamina defined by y = f(x), $a \le x \le b$ and $\rho = \text{constant}$:

$$\overline{x} = \frac{M_y}{M} = \frac{\int_a^b x \rho f(x) \, dx}{\int_a^b \rho f(x) \, dx} = \frac{\int_a^b x f(x) \, dx}{\int_a^b f(x) \, dx}$$
$$\overline{y} = \frac{M_x}{M} = \frac{\int_a^b \frac{1}{2} \rho \left\{ f(x) \right\}^2 \, dx}{\int_a^b \rho f(x) \, dx} = \frac{\int_a^b \frac{1}{2} \left\{ f(x) \right\}^2 \, dx}{\int_a^b f(x) \, dx}$$

(b) Lamina between two curves by y = f(x), y = g(x), $a \le x \le b$ and $\rho = \text{constant}$:

$$\overline{x} = \frac{M_y}{M} = \frac{\int_a^b x \rho(f(x) - g(x)) \, dx}{\int_a^b \rho(f(x) - g(x)) \, dx} = \frac{\int_a^b x (f(x) - g(x)) \, dx}{\int_a^b (f(x) - g(x)) \, dx}$$

$$\overline{y} = \frac{M_x}{M} = \frac{\int_a^b \frac{1}{2} \rho\left(\{f(x)\}^2 - \{g(x)\}^2\right) dx}{\int_a^b \rho(f(x) - g(x)) dx} = \frac{\int_a^b \frac{1}{2} \left(\{f(x)\}^2 - \{g(x)\}^2\right) dx}{\int_a^b (f(x) - g(x)) dx}$$

- (8) Sequences; limits of sequences; Limit Laws for Sequences; monotone sequences (increasing and decreasing); bounded sequences; Monotone Sequence Theorem.
- (9) Additional useful limit theorems:
 - (a) <u>Theorem</u>: If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$, then $\lim_{n\to\infty} a_n = L$.
 - (b) <u>Squeeze Theorem for Sequences</u>: If $a_n \leq b_n \leq c_n$ for all $n \geq N_0$ with $a_n \longrightarrow L$ and $c_n \longrightarrow L$, then $b_n \longrightarrow L$.
 - (c) <u>Theorem</u>: If $a_n \longrightarrow L$ and f is continuous at L, then $f(a_n) \longrightarrow f(L)$.
- (10) Infinite series $\sum_{n=1}^{\infty} a_n$; n^{th} partial sum $s_n = \sum_{k=1}^n a_k$; the infinite series $\sum_{n=1}^{\infty} a_n$ converges to s if $s_n \to s$; the infinite series diverges if $\{s_n\}$ does not have a limit.
- (11) <u>Divergence Test for Series</u>: If $\lim_{n\to\infty} a_n \neq 0$ or limit fails to exist $\Longrightarrow \sum_{n=1}^{\infty} a_n$ DIVERGES.
- (12) Special Infinite Series:
 - (a) Geometric Series: $\sum_{n=1}^{\infty} ar^{n-1}$
 - (i) $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots = a(1 + r + r^2 + r^3 + \dots) = \frac{a}{1 r}, \quad \text{if } |r| < 1.$
 - (ii) $\sum_{n=1}^{\infty} ar^{n-1}$ will DIVERGE **if** $|r| \ge 1$.
- (13) Besides reviewing all homework problems, students should do the following review exercises from the book:

Section 7.3: 4, 5, 6, 8, 9, 10, 11, 12, 14, 19, 23

Section 7.4: 1, 2, 3, 4b, 9, 10, 11, 16, 19

Section 7.8: 3, 4, 8, 9, 13, 19, 21, 22, 26, 37

Section 8.1: 1, 11, 12, 13, 17

Section 8.2: 7, 8, 12, 13, 14, 18

Section 8.3: 29, 20, 31, 32, 33, 35

Section 11.1: 19, 20, 21, 22, 23, 24, 30, 31

Section 11.2: 21, 22, 23, 24, 25, 32

Acknowledgement: These notes written by Prof. Johnny Brown.