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1. Series

We begin with a sequence {a1, a2, a3, . . . an . . .} = {an}∞n=1, and form a new sequence
called partial sums:

s1 = a1

s2 = a1 + a2 =
2∑

n=1

an

s3 = a1 + a2 + a3 =
3∑

n=1

an

. . .

sN = a1 + a2 + a3 + . . . an =
N∑

n=1

an . . .

sN is the sum of the first N -terms of the sequence {an}∞n=1. The limit of the sequence of
partial sums sN as n → ∞.

s = lim
N→∞

sN = lim
N→∞

N∑
n=1

an =
∞∑
n=1

an is called an infinite series

If the limit lim
N→∞

N∑
n=1

an exists and is finite, we say that the series
∞∑
n=1

an converges.

In general it is quite hard to decide if a series converges.

Convergence Tests

The First Thing to is to apply this simple test for divergence: If
limn→∞ |an| does not exist, or if limn→∞ |an| = L, but L ̸= 0, the series

∑∞
j=1 aj

diverges.
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2 SEQUENCES AND SERIES

Examples:

1.
∞∑
n=1

(−1)n. In this case an = (−1)n and so |an| = 1 and limn→∞ |an| = 1. The series

diverges.

2.
∞∑
n=1

cos(
1

n
) diverges because lim

n→∞
cos(1/n) = 1

3.
∞∑
n=1

e
1
n also diverges because lim

n→∞
e1/n = 1

4.
∞∑
n=1

rn, if |r| > 1 diverges because limn→∞ |r|n = ∞ if |r| > 1.

5.
∞∑
n=1

(−1)n
√

4n2 + 7n+ 2

n2 + 9n
diverges because lim

n→∞

√
4n2 + 7n+ 2

n2 + 9n
= 2.

Remark: This is a very limited test which only serves to show that a series
diverge. It only says that the series diverges if the limit is not equal to zero, or
if it does not exist. If limn→∞ |an| = 0 the test does not say that the series
converges.

1.1. Geometric series: These are series of the form
∞∑
n=1

rn, with |r| < 1. One can actually

compute the sum of such series. If

SN =
N∑

n=1

rn = r + r2 + r3 + . . .+ rN−1 + rN , then

rSN = r2 + r3 + . . .+ rN + rN+1

and so

SN − rSN = (1− r)SN = r − rN+1, so

SN =
r − rN+1

1− r

Since |r| < 1, lim
N→∞

rN+1 = 0, and hence

lim
N→∞

SN = lim
N→∞

N∑
n=1

rn =
∞∑
n=1

rn =
r

1− r
.
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Variations of this formula:

∞∑
n=0

rn = 1 + r + r2 + ... . . . = 1 +
∞∑
n=1

rn = 1 +
r

1− r
=

1

1− r

∞∑
n=k

rn = rk + rk+1 + rk+2 + ... . . . = rk(1 + r + r2 + . . .) = rk
∞∑
n=0

rn =

rk
1

1− r
=

rk

1− r
.

Examples: Compute the sum of the following series:

1.
∞∑
n=3

3n

4n

We need to recognize that this series is equal to
∞∑
n=3

3n

4n
=

∞∑
n=3

(
3

4
)n =

(3
4
)3

1− 3
4

=
(3
4
)3

1
4

=
81

16
.

2.
∞∑
n=2

1 + 2n

4n

This is not really a geometric series, but it can be split into two geometric series

∞∑
n=2

1 + 2n

4n
=

∞∑
n=2

1

4n
+

∞∑
n=2

2n

4n
=

∞∑
n=2

(
1

4
)n +

∞∑
n=2

(
2

4
)n =

(1
4
)2

1− 1
4

+
(1
2
)2

1− 1
2

=
1

12
+

1

2
=

7

12
.

1.2. Convergence tests: We will analyze he convergence of more complicated series. First
we deal with series of non-negative terms and the first test of convergence is the integral test:

The Integral Test: Let f(x) be a continuous function defined on [1,∞) and
suppose that
i) f(x) > 0
ii) f(x) is decreasing
iii) lim

x→∞
f(x) = 0,

if

∫ ∞

1

f(x) dx converges, then
∑∞

n=1 f(n) converges, and reciprocally

if
∑∞

n=1 f(n) converges, then

∫ ∞

1

f(x) dx converges.
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With this test we can analyze the convergence of the following series:

∞∑
n=1

1

np
,

∞∑
n=2

1

n(lnn)p
,

∞∑
n=1

e−n

∞∑
n=1

1

1 + n2

In the first case f(x) = 1
xp . The case p = 1, f(x) = 1

x
satisfies the conditions i, ii and iii

of the theorem. So we need to analyze the integral∫ ∞

1

1

x
dx = ln x|∞1 = lim

x→∞
lnx = ∞. it diverges

So
∑∞

n=1
1
n
diverges.

When p < 1∫ ∞

1

1

xp
dx =

1

1− p
x1−p

∣∣∞
1

=
1

1− p
(−1 + lim

x→∞
x1−p) = ∞. it diverges

So
∑∞

n=1
1
np also diverges when p < 1.

However, when p > 1,∫ ∞

1

1

xp
dx =

1

1− p
x1−p

∣∣∞
1

=
1

1− p
(−1 + lim

x→∞
x1−p) =

1

p− 1
. it converges

Conclusion:
∞∑
n=1

1

np
converges when p > 1 and diverges for p ≤ 1.

The second example is similar because if one sets u = ln x, then

∫ ∞

2

1

x(lnx)p
dx =

∫ ∞

ln 2

du

up
,

which diverges when p ≤ 1 and converges when p > 1.

Conclusion:
∞∑
n=2

1

n(lnn)p
converges when p > 1 and diverges for p ≤ 1.
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Since

∫ ∞

1

e−x dx = e−1, the series
∑∞

n=1 e
−n converges.

In the last example∫ ∞

1

1

1 + x2
dx = arctanx|∞1 =

π

2
− 1. So the series converges.

Now we have a small collection of series that we know converge or diverge. The next tests
are used to compare two series and use the convergence or the divergence of one of them to
analyze the convergence or divergence of the other.

The comparison test: Let {an} and {bn} be two sequences with 0 ≤ an ≤ bn
for n large

If
∞∑
n=1

bn converges, then the smaller one also converges, i.e
∞∑
n=1

an converges

If
∞∑
n=1

an diverges, then the bigger one also diverges, i.e
∞∑
n=1

bn diverges .

Examples:

1.
∞∑
n=1

1

10n+ 5
. Notice that

10n+ 5 < 20n, for n = 1, 2, 3, therefore

1

10n+ 5
>

1

20n

Since the series
∞∑
n=1

1

20n
diverges,

∞∑
n=1

1

10n+ 5
also diverges.

2.
∞∑
n=1

1

n2 + 6n+ 2
. Here we have

n2 + 6n+ 2 > n2, therefore

1

n2 + 6n+ 2
<

1

n2

Conclusion:
∞∑
n=1

1

n2 + 6n+ 2
converges.
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3.
∞∑
n=1

| cos 3n|
n3

. Since | cos θ| ≤ 1 for any θ,
| cos 3n|

n3
≤ 1

n3
. Since

∞∑
n=1

1

n3
converges,

∞∑
n=1

| cos 3n|
n3

also converges.

4. Let f(x) be a function defined on [1,∞) such that 5x ≤ f(x) ≤ 10x2. What can be said

about the series
∞∑
n=1

f(n)

n4 + 3
and

∞∑
n=1

f(n)

n2 + 7
?

Since f(x) ≤ 10x2, it follows that
f(n)

n4 + 3
≤ 10

n2

n4 + 3
≤ 1

n2
. Since the series

∞∑
n=1

1

n2

converges, so does
∞∑
n=1

f(n)

n4 + 3
. On the other hand, since f(x) ≥ 5x, it follows that

f(n)

n2 + 3
≥ 5n

n2 + 3
. But n2 + 3 ≤ 10n2 and therefore

f(n)

n2 + 3
≥ 5n

n2 + 3
≥ 5n

10n2
=

1

2n
.

Since
∞∑
n=1

1

n
diverges, so does

∞∑
n=1

f(n)

n2 + 3
.

The following is a better test says that all you need to worry about is the behavior of the
terms of the series at infinity.

The limit comparison test: Let {an} and {bn} be two sequences such that
nor large n, an > 0 and bn > 0 and

lim
n→∞

an
bn

= L, and L ̸= 0, L ̸= ∞.

Then either both series
∑∞

n=1 an and
∑∞

n=1 bn converge or both series
∑∞

n=1 an
and

∑∞
n=1 bn diverge.

So if we know one of the series converges, the other cone also converges. If one
of the series diverges, so does the other one.

1. Use the limit comparison theorem to analyze the convergence of
∞∑
n=1

6n2 + 8n+ 4

n3 + 12
.

Here is how one should apply this test: Notice that for n very large
6n2 + 8n+ 4

n3 + 12
∼

6n2

n3
=

6

n
, and since

∞∑
n=1

1

n
diverges, then

∞∑
n=1

6n2 + 8n+ 4

n3 + 12
also diverges. One can more

precisely use the theorem by showing that

lim
n→∞

6n2+8n+4
n3+12

1
n

= lim
n(6n2 + 8n+ 4)

n3 + 12
= 6 ̸= 0,
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and thus
∞∑
n=1

6n2 + 8n+ 4

n3 + 12
diverges because

∞∑
n=1

1

n
diverges.

2. For what values of p > 0 does the series
∞∑
n=1

√
n4 + 3n

np + 2
converge? The point here is to

write √
n4 + 3n

np + 2
=

√
n4(1 + 3

n3 )

np(1 + 2
np )

=
1

n
p−4
2

√
1 + 3

n3

1 + 2
np

.

Therefore, for large n,

√
n4 + 3n

np + 2
∼ 1

n
p−4
2

and therefore both series
∞∑
n=1

√
n4 + 3n

np + 2
and

∞∑
n=1

1

n
p−4
2

converge for the same values of p, which in this case is
p− 4

2
> 1, or p > 6.

One can more precisely state that

lim
n→∞

√
n4+3n
np+2

1

n
p−4
2

= lim
n→∞

√
1 + 3

n3

1 + 2
np

= 1.

and use the limit comparison test as stated above.

3.
∞∑
n=1

sin(
1

n
). We know that

lim
x→0

sinx

x
= 1,

this means that for x small sinx ∼ x. So for n large, sin( 1
n
) ∼ 1

n
and therefore

∑∞
n=1 sin(

1
n
)

diverges because
∑∞

n=1
1
n
does. As above, one could apply this more formally if we think

of 1
n
as x and in this case

lim
n→∞

sin( 1
n
)

1
n

= lim
x→0

sin x

x
= 1.

So,
∞∑
n=1

sin(
1

n
) diverges because

∞∑
n=1

1

n
does.

4. For what values of p > 0 does the series
∞∑
n=1

sin(
1

np
) converge? As we saw above, when x

is small sinx ∼ x, and so for large n, sin(
1

np
) ∼ 1

np
and we conclude that

∞∑
n=1

sin(
1

np
) diverges when p ≤ 1 because

∞∑
n=1

1

np
diverges when p ≤ 1.
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∞∑
n=1

sin(
1

np
) converges when p > 1 because

∞∑
n=1

1

np
converges when p > 1.

5. For what values of p > 0 does the series
∞∑
n=1

ln(1 +
1

np
) converge? If we take the limit

lim
x→0

ln(1 + x)

x
= lim

x→0

d
dx

ln(1 + x)
d
dx
x

= lim
x→0

1

1 + x
= 1.

Conclusion: ln(1 +
1

np
) ∼ 1

np
and so

∞∑
n=1

ln(1 +
1

np
) converges for p > 1 and diverges

for p ≤ 1.

6.
∞∑
n=1

1

n1+ 1
n

. We compare the series
∞∑
n=1

1

n1+ 1
n

with
∞∑
n=1

1

n
. Take the limit

lim
n→∞

1

n1+ 1
n

1
n

= lim
n→∞

n

n1+ 1
n

= lim
n→∞

1

n
1
n

= 1.

We computed the last limit in the section above, when we discussed sequences. So both
∞∑
n=1

1

n1+ 1
n

and
∞∑
n=1

1

n
diverge.

7.
∞∑
n=1

1

n2+ 1
n

. We compare the series
∞∑
n=1

1

n2+ 1
n

with
∞∑
n=1

1

n2
. Take the limit

lim
n→∞

1

n2+ 1
n

1
n2

= lim
n→∞

n2

n2+ 1
n

= lim
n→∞

1

n
1
n

= 1.

So both
∞∑
n=1

1

n2+ 1
n

and
∞∑
n=1

1

n2
converge.

Review exercises from the textbook: Section 11.3, problems 3 to 26, 30 and 31. Section
11.4, problems 3 to 32.

2. Alternating series

So far we have only considered series of positive terms. Next we study a particular case
of series which have positive and negative terms, these are called alternating series. These

are series of the form
∞∑
n=1

(−1)nbn, where bn > 0. We can say certain particular cases of

alternating series converge, and even estimate the sum of the series:
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Alternating series test: If the sequence {bn} satisfies:

i) bn > 0, n = 1, 2, . . .

ii) bn ≥ bn+1, or in other words, the sequence is decreasing

iii) lim
n→∞

bn = 0,

then the alternating series
∞∑
n=1

(−1)nbn converges.

We can say more for alternating series

Alternating Series Estimation Theorem S =
∞∑
n=1

(−1)nbn is the sum of the

series and SN =
N∑

n=1

(−1)nbn, is the partial sum of the first N terms, then

|S − SN | ≤ bN+1.

Verify that the following series satisfy the conditions of the alternating series test and
estimate the sum of the series with an error less than or equal to 10−5.

1)
∑
n=1

∞(−1)n−1 1

n!
, here n! = 1.2.3.4.5...n is the product of all number from 1 to n.

2)
∑
n=1

∞(−1)n−1 1

n3

In case 1, bn satisfies the conditions of the test. To estimate the sum we use that

|S − SN | ≤ bN+1 =
1

(N + 1)!

so we want to find N such that
1

(N + 1)!
< 10−5, which is the same as (N +1)! > 105. This

is small enough that one can do by trial and error:

If N = 7, (N + 1)! = 8! = 8.7.6.5.4.3.1 = 40, 320. Not quite
If N = 8, (N + 1)! = 9! = 9.8.7.6.5.4.3.1 = 362, 880 and this works.
So if we add the first 8 terms of he series, we find the sum up to an error which is not

greater than 10−5 :
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S8 = 1− 1
2!
+ 1

3!
− 1

4!
+ 1

5!
− 1

6!
+ 1

7!
− 1

8!
.

In example 2, bn = 1
n3 , which is easily seen to satisfy the three conditions. In this case, we

have

|S − SN | ≤ bN+1 =
1

(N + 1)3

and so we want
1

(N + 1)3
< 10−5 which is the same as (N + 1)3 ≥ 105. So N + 1 ≥ 105/3 ∼

46.41. So we need N = 46. So we have to take the sum of the first 46 terms of the series to
obtain an approximation with an error that is less than or equal to 10−5.

Review exercises from the textbook: Section 11.5, problems 7 to 20. 23 to 26.

3. Absolute Convergence

3.1. Absolute convergence. We consider a series
∞∑
n=1

an where the terms are

not necessarily positive. We say that
∞∑
n=1

an converges absolutely if
∞∑
n=1

|an| con-

verges.

Fact: If
∞∑
n=1

|an| converges, then
∞∑
n=1

an converges.

It is important to understand the following:

∞∑
n=1

an may converge and
∞∑
n=1

|an| diverge. Take for example the series

∞∑
n=1

(−1)n
1

n
, which is an alternating series with bn = 1

n
so it converges. How-

ever
∞∑
n=1

∣∣∣∣(−1)n
1

n

∣∣∣∣ = ∞∑
n=1

1

n
diverges.
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When the series
∞∑
n=1

an converges but
∞∑
n=1

|an| diverges, we say that
∞∑
n=1

an

converges conditionally.

Besides the comparison test and the limit comparison test, we have two tests for absolute
convergence:

The Ratio Test: Let {an} be a sequence such that lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L. Then

1) If L < 1 the series
∞∑
n=1

|an| converges.

2) If L > 1 the series
∞∑
n=1

an diverges (notice we do not have absolute values here).

3) If L = 1 nothing can be said about the convergence of the series.

The Root Test: Let {an} be a sequence such that lim
n→∞

|an|
1
n = L. Then

1) If L < 1 the series
∞∑
n=1

|an| converges.

2) If L > 1 the series
∞∑
n=1

an diverges (notice we do not have absolute values here).

3) If L = 1 nothing can be said about the convergence of the series.

These tests are in fact comparison tests with a gemoetric series. It is
easy to see that for the root test. In this case the test says that for n
large |an| ∼ Ln. If L < 1 the series

∑
Ln converges.

Use the ratio and root tests to analyze the convergence of the following series:

1.
∞∑
n=1

(−1)n
10n

n!
. We use the ratio test, which is suitable when we have factorials. The root

test usually does not obviously combine very well with factorials. In this case, |an| =
10n

n!
and hence

|an+1

an
| = 10n+1

(n+ 1)!

n!

10n
=

10

n+ 1
.
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Therefore lim
n→∞

|an+1

an
| = 0 < 1 so the series converges absolutely.

2.
∞∑
n=1

(−1)n
n10

2n

We may use either the ratio of the root test. Let’s use the ratio test. In this case

|an| =
n10

2n
and hence

|an+1

an
| = (n+ 1)10

2n+1

2n

n10
=

1

2
(
n+ 1

n
)10.

Hence limn→∞ |an+1

an
| = 1

2
< 1 so the series converges absolutely.

Notice that |an|
1
n =

1

2
(n

1
n )10. Recall that limn

1
n = 1 therefore, limn→∞ |an|

1
n = 1

2
< 1

so the series converges absolutely.

3.
∞∑
n=1

(2
1
n − 1)n

Here an = (2n − 1)n so it’s obviously a case for the root test: a
1
n
n = 2

1
n − 1, and so

limn→∞ |an|
1
n = limn→∞(2

1
n − 1) = 20 − 1 = 0 < 1, so the series converges absolutely.

4. For what values of a does the series
∞∑
n=1

(1 +
a

n
)n

2

converge?

This is again a case for the root test. In this case

|an|
1
n = (1 +

a

n
)n and we know that

lim
n→∞

(1 +
a

n
)n = ea.

So the root test says that the series converges if ea < 1 so a < 0 and it diverges if ea > 1

so it diverges for a > 0. When a = 0, the series
∞∑
n=1

(1 +
a

n
)n

2

=
∞∑
n=1

1 which obviously

diverges. Conclusion: The series converges when a < 0 and diverges when a ≥ 0.

5. For what values of a does the series
∞∑
n=1

(
n

n+ a

)n2

converge? Here we write

∞∑
n=1

(
n

n+ a

)n2

=
∞∑
n=1

1

(1 + a
n
)n2 .
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As in the previous case, we apply the root test and find

lim
n→∞

(
1

(1 + a
n
)n2

) 1
n

= lim
n→∞

1

(1 + a
n
)n

=
1

ea
.

So we conclude that
∞∑
n=1

(
n

n+ a

)n2

converges when a > 0.

6.
∞∑
n=1

(sin
1

n
)n

Here an = (sin
1

n
)n and hence |an|

1
n = sin(

1

n
). Therefore the series

∞∑
n=1

(sin
1

n
)n converges

because lim
n→∞

sin(1/n) = 0 < 1.

Review exercises from the textbook: Section 11.6, problems 7 to 20 and 25 to
34. Section 11.7, problems 1 to 38.

4. Power Series

Series of the form
∞∑
n=1

Cn(x−a)n are called power series. We can use the ration or root

test to find the values of x for which a power series converges.
Examples:

7. For what values of x does the series
∞∑
n=1

(x− 1)n

n22n
converge?

We can use either the ratio or root test. Let’s use the root test an =
(x− 1)n

n22n
and so

|an|
1
n =

|x− 1|
n

2
n2

. Since n
2
n = (n

1
n )2 and lim

n→∞
n

1
n = 1, it follows that lim

n→∞
|an|

1
n =

|x− 1|
2

.

The convergence is guaranteed if
|x− 1|

2
< 1. This is an interval centered at 1 with

radius 2, and this is called the radius of convergence. This interval can also be described
as −2 < x− 1 < 2 or −1 < x < 3. The result also says the series diverges for |x− 1| > 2,
or in other words if either x > 3 or x < −1. But what about the points x = −1 or x = 3?
In this case the root test is inconclusive because the limit is equal to one. These cases
have to be checked separately: When x = −1,

∞∑
n=1

(x− 1)n

n22n
=

∞∑
n=1

(−2)n

n22n
=

∞∑
n=1

(−1)n

n2
which converges
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When x = 3,

∞∑
n=1

(x− 1)n

n22n

∞∑
n=1

(2)n

n22n
=

∞∑
n=1

1

n2
which converges

Conclusion: The series
∞∑
n=1

(x− 1)n

n22n
converges if −1 ≤ x ≤ 3, or if x is on the interval

[−1, 3], and diverges if either x > 3 or x < −1. The interval [−1, 3] is called the interval
of convergence.

8. For what values of x does the series
∞∑
n=1

(x− 3)n

n3n
converge?

We will use the ratio test, but we could also use the root test. Notice that the series
converges for x = 3 because all terms are equal to zero. So we may assume x ̸= 3. In this

case an =
(x− 3)n

n3n
and therefore

∣∣∣∣an+1

an

∣∣∣∣ = |x− 3|n+1

(n+ 1)3n+1

n3n

|x− 3|n
=

|x− 3|
3

n

n+ 1
.

lim
n→∞

∣∣∣∣ an
an + 1

∣∣∣∣ = |x− 3|
3

.

So the ratio test says that the series converges for |x−3| < 3 and diverges for |x−3| > 3.
The radius of convergence is 3. Therefore the series converges if −3 < x − 3 < 3 or
0 < x < 6 and diverges if either x > 6 or x < 0. We need to check points x = 0 and x− 6

separately, because in these cases lim
n→0

∣∣∣∣an+1

an

∣∣∣∣ = 1 and the ratio test is inconclusive. So

we need to test these points separately.

when x = 0,
∞∑
n=1

(x− 3)n

n3n
=

∞∑
n=1

(−3)n

n3n
=

∞∑
n=1

(−1)n

n
which converges

when x = 3,
∞∑
n=1

(x− 3)n

n3n
=

∞∑
n=1

(3)n

n3n
=

∞∑
n=1

1

n
which diverges .

Conclusion: The series
∞∑
n=1

(x− 3)n

n3n
converges when 0 ≤ x < 6, and the interval of

convergence is [0, 6).
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9. For what values of x does the series
∞∑
n=1

(x− 2)n

3nn!
converge?

Here an =
(x− 2)n

3nn!
. So for x ̸= 2,∣∣∣∣an+1

an

∣∣∣∣ = |(x− 2)|n+1

3n+1(n+ 1)!

3nn!

|x− 2|n
=

|x− 2|
3(n+ 1)

.

So we conclude that limn→∞

∣∣∣an+1

an

∣∣∣ = 0 < 1 for any x. Since the limit is always equal to

zero, the series converges for every x.

Review exercises from the textbook: Section 11.8, problems 1 to 26.

4.1. Representation of functions as power series: We say that a function f(x) has a
power series representation centered at a which has a radius of convergence R if the power

series
∞∑
n=0

cn(x− a)n converges if |x− a| < R and

f(x) =
∞∑
n=0

cn(x− a)n for all x satisfying |x− a| < R.

Main result: If a function f(x) has a power series representation centered at 0,

f(x) =
∞∑
n=0

cnx
n if |x| < R,

this is said to be theMaclaurin series of f and cn =
f (n)(0)

n!
. On the other hand, if a function

f(x) has a power series representation centered at a,

f(x) =
∞∑
n=0

bn(x− a)n if |x− a| < R,

this is said to be the Taylor series of f centered at a, or the Taylor series of f at a, and

bn =
f (n)(a)

n!
.

Notice that this shows that a function f(x) cannot have two distinct power series repre-
sentations centered at the same point.
Here we will use the sum of the geometric series to construct many examples of functions

which are represented by power series. Recall that

1

1− x
=

∞∑
n=0

xn provided |x| < 1,(4.1)
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which is the Maclaurin series of
1

1− x
. We will use this to construct several other examples

of converging power series.

Examples:

1. Find the Maclaurin series representation of
1

1 + x
. If we substitute x by −x in the formula

(4.1) above, we obtain

1

1 + x
=

∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn provided |x| < 1.

2. Find the Maclaurin series representation of
1

1 + x3
. If we substitute x by −x3 in (4.1),

we obtain

1

1 + x3
=

∞∑
n=0

(−x3)n =
∞∑
n=0

(−1)nx3n provided |x| < 1.

3. Find the Taylor series representation of
1

x
centered at 2. Here the power series is centered

at 2, which means we want an expression of the form

1

x
=

∞∑
n=0

cn(x− 2)n.

The idea is to write

1

x
=

1

2 + x− 2
=

1

2

(
1

1 + x−2
2

)
If we use (4.1) with x replaced by −x−2

2
, we have

1

1 + x−2
2

=
∞∑
n=0

(−1)n
(
x− 2

2

)n

=
∞∑
n=0

(−1)n

2n
(x− 2)n, provided

|x− 2|
2

< 1.

Conclusion:
1

x
=

1

2

(
1

1 + x−2
2

)
=

∞∑
n=0

(−1)n

2n+1
(x− 2)n, provided

|x− 2|
2

< 1.

4. Find the Taylor series representation of f(x) =
1

x2 + 6x+ 13
centered at −3. Just notice

that

1

x2 + 6x+ 13
=

1

(x+ 3)2 + 4
=

1

4
(

1

1 + (x+3)2

4

) =
1

4

∞∑
n=0

(−1)n
(
(x+ 3)2

4

)n

,

provided
(x+ 3)2

4
< 1.
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Conclusion:
1

x2 + 6x+ 13
=

∞∑
n=0

(−1)n

4n+1
(x+ 3)2n, provided |x+ 3| < 2.

The following result gives us a way of constructing even more examples of functions that
are represented by power series.
Result: If f(x) has a power series representation

f(x) =
∞∑
n=0

cn(x− a)n provided |x− a| < R,

Then the derivative and integral of f also have power series representations given by

f ′(x) =
∞∑
n=0

ncn(x− a)n−1, provided |x− a| < R,

∫
f(x) dx = C +

∞∑
n=0

cn
n+ 1

(x− a)n+1, provided |x− a| < R.

Examples:

1. Find the Maclaurin series for
1

(1− x)3
. We have to fist notice that

d

dx

1

1− x
=

1

(1− x)2

and
d2

dx2

1

1− x
=

d

dx

1

(1− x)2
=

2

(1− x)3
. On the other hand,

1

1− x
=

∞∑
n=0

xn, |x| < 1,

d

dx

1

1− x
=

∞∑
n=1

nxn−1, |x| < 1,

d2

dx2

1

1− x
=

∞∑
n=2

n(n− 1)xn−2, |x| < 1.

Therefore,
1

(1− x)3
=

1

2

d2

dx2

1

1− x
=

∞∑
n=2

n(n− 1)

2
xn−2, |x| < 1. One may want to ex-

press this in terms of xn instead of xn−2. Just set k = n− 2 and then n = k + 2 and so
1

(1− x)3
=

∞∑
k=0

(k + 2)(k + 1)

2
xk, provided |x| < 1.

2. Find the Maclaurin series expansion of ln(1− x). We know that

ln(1− x) =

∫ x

0

1

1− t
dt,
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But from the result just stated

1

1− t
=

∞∑
n=0

tn, and so

∫ x

0

1

1− t
dx =

∫ x

0

(
∞∑
n=0

tn) dx =
∞∑
n=0

∫ x

0

tn dt =
∞∑
n=0

xn+1

n+ 1
, |x| < 1

Therefore

ln(1− x) = −
∞∑
n=0

xn+1

n+ 1
, |x| < 1.

3. Find the Taylor series expansion of lnx centered at 10. We start from the fact that

lnx = C +

∫
1

x
dx and

1

x
=

1

10 + x− 10
=

1

10
(

1

1 + x−10
10

) =
∞∑
n=0

(−1)n

10n+1
(x− 10)n, |x− 10| < 10.

Therefore, provided |x− 10| < 10,

lnx = C +

∫
(

∞∑
n=0

(−1)n

10n+1
(x− 10)n) dx = C +

∞∑
n=0

(−1)n

(n+ 1)10n+1
(x− 10)n+1

To compute C, we just set x = 10 in this formula, so C = ln 10.

Conclusion: lnx = ln 10 +
∞∑
n=0

(−1)n

(n+ 1)10n+1
(x− 10)n+1, provided |x− 10| < 10.

4. Find the Maclaurin series representation of arctan x. We use that

arctanx = C +

∫
1

1 + x2
dx = C +

∫
(

∞∑
n=0

(−1)nx2n) dx = C +
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.

If we set x = 0 we find that C = 0. So arctan x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, provided |x| < 1.

5. Compute arctan 0.1 with an error not greater than 10−6. We use the formula we just
obtained and substitute x = 0.1. We obtain

arctan 0.1 =
∞∑
n=0

(−1)n
(0.1)2n+1

2n+ 1
=

∞∑
n=0

(−1)n
1

102n+1(2n+ 1)
=

Notice that this is an alternating series and we recall that if SN is the sum of the first
N terms of an alternating series S =

∑∞
n=1(−1)n−1bn, then |S − SN | ≤ bN+1. To apply
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this result consistently, we should rewrite the series so the sum starts at n = 1 If we set
k = n+ 1, when n = 0, then k = 1. But then n = k − 1, and so

∞∑
n=0

(−1)n
1

102n+1(2n+ 1)
=

∞∑
k=1

(−1)k−1 1

102k−1(2k − 1)
.

In this case, bk =
1

(2k−1)102k−1 and so we want

bN+1 =
1

(2N + 1)102N+1
≤ 1

106
,

which implies that (2N + 2)102N+2 ≥ 106. N = 2 does not quite do this, but N = 3
certainly does. So

Conclusion: arctan 0.1 = 0.1− 1

3 103
+

1

5 105
=

1

10
− 1

3000
+

1

500000
+e, where |e| ≤ 10−6.

Review exercises from the textbook: Section 11.9, problems 3 to 9, 11, 12, 15,
16, 17, 18 19, 20, 21, 23 24, 29, 30.

4.2. More Taylor and Maclaurin series: The examples above are examples of Taylor
and Maclaurin expansions. There are other functions which have Taylor and Maclaurin
expansions:

sinx =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1, for all x on (−∞,∞),

cosx =
∞∑
n=0

(−1)n

(2n)!
x2n, for all x on (−∞,∞),

ex =
∞∑
n=0

1

n!
xn, for all x on (−∞,∞).

We have adopted the convention: 0! = 1 and we just use this convention to be able to
write the Maclaurin series of ex and cos x as above. With these formulas we can find the
Taylor and Maclaurin series of variations of these functions.
Find the Maclaurin series of the following functions:

1. sin(3x) We just replace x with 3x in the Maclaurin series of sin x. So we obtain

sin(3x) =
∞∑
n=0

(−1)n

(2n+ 1)!
(3x)2n+1 =

∞∑
n=0

(−1)n32n+1

(2n+ 1)!
x2n+1, for all x
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2. cos(
x2

4
). Here we just replace x with x2

4
in the Maclaurin series of cosx. So we obtain

cos(
x2

4
) =

∞∑
n=0

(−1)n

(2n)!
(
x2

4
)2n =

∞∑
n=0

(−1)n

42n(2n)!
x4n, for all x

3. e4x =
∞∑
n=0

1

n!
(4x)n =

∞∑
n=0

4n

n!
xn, for all x.

4. e2x + e3x. We write the Maclaurin series for each function separately

e2x =
∞∑
n=0

1

n!
(2x)n =

∞∑
n=0

2n

n!
xn,

e3x =
∞∑
n=0

3n

n!
xn =

∞∑
n=0

3n

n!
xn, therefore

e2x + e3x =
∞∑
n=0

2n

n!
xn +

∞∑
n=0

3n

n!
xn =

∞∑
n=0

2n + 3n

n!
xn.

5.
ex − 1

x
. We know that ex = 1+x+

x2

2
+

x3

3!
+

x4

4!
+ . . . =

∞∑
n=0

1

n!
xn, for all x. Therefore

ex − 1 = x+
x2

2
+

x3

3!
+

x4

4!
+ . . . =

∞∑
n=1

1

n!
xn and therefore,

ex − 1

x
=

∞∑
n=1

1

n!
xn−1. If we

set k = n− 1, and so n = k + 1, we obtain

ex − 1

x
=

∞∑
k=0

1

(k + 1)!
xk, for all x.

6. Let f(x) = ln(x−1). Find f (10)(3) (the tenth derivative of f at 3). One could compute
ten derivatives of the function and evaluate it at 3, but this is a lot of work. One can
use the power series representation of this function centered at 3 and use its coefficients
to compute the derivative of the function f(x) at 3. We write

1

x− 1
=

1

(x− 3) + 2
=

1

2
(

1

1 + x−3
2

) =
∞∑
n=0

(−1)n

2n+1
(x− 3)n,

|x− 3|
2

< 1.

Therefore

ln(x− 1) = C +

∫
1

x− 1
dx = C +

∫
(

∞∑
n=0

(−1)n

2n+1
(x− 3)n) dx =

C +
∞∑
n=0

(−1)n

(n+ 1)2n+1
(x− 3)n+1.
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Setting x = 3 we obtain C = ln 2. So we conclude that

ln(x− 1) = ln 2 +
∞∑
n=0

(−1)n

(n+ 1)2n+1
(x− 3)n+1.

On the other hand the Taylor series is defined to be of the form
∑∞

n=0Cn(x − 3)n,

where Cn =
f (n)(3)

n!
. So to find the tenth derivative, we have to look for the coefficient

of (x− 3)10, which in this case is C10 =
(−1)9

10 210
=

f (10)(3)

10!
. Therefore

f (10)(3) = − 10!

10 210
.

7. Represent

∫ 1

0

cosx3 dx as an infinite series. We know that cos x =
∞∑
n=0

(−1)n

(2n)!
x2n and

therefore cos x3 =
∞∑
n=0

(−1)n

(2n)!
x6n and therefore

∫ 1

0

cosx3 dx =

∫ 1

0

(
∞∑
n=0

(−1)n

(2n)!
x6n) dx =

∞∑
n=0

(−1)n

(2n)!
(

∫ 1

0

x6n dx) =
∞∑
n=0

(−1)n

(6n+ 1)(2n)!
.

Review exercises from the textbook: Section 11.10, problems number 3, 4, 5, 6,
8, 9, 11, 12, 16, 18, 21, 23, 31, 32, 35, 36, 37, 39, 40, 41.

5. Additional Exercises (mostly from old exams)

1. If {an} is a sequence such that limn→∞ n3|an| = 1. What can be said about the abso-

lute convergence of
∞∑
n=1

an?

2. Does
∞∑
n=1

n sin(
1

n3
) converge or diverge?

3. For what values of p
∞∑
n=1

n sin(
1

n1+p
) converge?

4. Let f(x) be a function such that f ′(x) = x2 cosx2 and f(0) = 0. Find the Maclaurin
series of f(x).

5. Express the integral

∫ 1

0

ex − 1

x
dx as an infinite series.

6. If f(x) = (1− x2)−1 then f (10)(0) =?

7. Find the values of p for which the series
∞∑
n=1

√
3

1 + np
converges?
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8. Find the radius of convergence of the series
∞∑
n=1

2nxn

n+ 1
.

9. Express

∫ x

0

t

1− t3
dt as a power series in x and find its radius of convergence

10. Let {an} be a sequence such that a1 > 0 and
an+1

an
= (−1)n

n+ 1

2n+ 7
for n ≥ 1. Let

{bn} be a sequence with bn > 0 such that limn→∞
|an|
bn

= 3 what can be said about the

convergence of
∑∞

n=1 an and
∑∞

n=1 bn?

11. What can be said about the convergence of
∞∑
n=1

(−1)n−1

(
9 + 3n

7n

)n

?

12. What can be said about the convergence of
∞∑
n=1

(−1)n−1

(
9 + 3n

7n

)n2

?

13. Find the Taylor series representation of f(x) =
x− 2

x2 − 4x+ 5
centered at 2 and its

radius of convergence.

14. Knowing that ln(1 + x) =
∞∑
n=1

(−1)n
xn

n
, find the smallest number of terms that one

needs to compute ln(1.1) with an error less than or equal to 10−8?


