MA 26600 Study Guide #2

- (1) First Order Differential Equations. (Separable, 1^{st} Order Linear, Homogeneous, Exact)
- (2) Second Order Linear Homogeneous with Equations Constant Coefficients.

The differential equation ay'' + by' + cy = 0 has Characteristic Equation $ar^2 + br + c = 0$. Call the roots r_1 and r_2 . The general solution of ay'' + by' + cy = 0 is as follows:

- (a) If r_1 , r_2 are real and distinct $\Rightarrow y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$
- (b) If $r_1 = \lambda + i\mu$ (hence $r_2 = \lambda i\mu$) $\Rightarrow y = C_1 e^{\lambda t} \cos \mu t + C_2 e^{\lambda t} \sin \mu t$
- (c) If $r_1 = r_2$ (repeated roots) $\Rightarrow y = C_1 e^{r_1 t} + C_2 t e^{r_1 t}$
- (3) Theory of 2^{nd} Linear Order Equations.

Wronskian of y_1, y_2 is $W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix}$.

- (a) The functions $y_1(t)$ and $y_2(t)$ are linearly independent over a < t < b if $W(y_1, y_2) \neq 0$ for at least one point in the interval.
- (b) THEOREM (Existence & Uniqueness) If p(t), q(t) and g(t) are continuous in an open interval $\alpha < t < \beta$ containing t_0 , then the IVP $\begin{cases} y'' + p(t) y' + q(t) y = g(t) \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$

has a unique solution $y = \phi(t)$ defined in the open interval $\alpha < t < \beta$.

- (c) <u>Superposition Principle</u> If $y_1(t)$ and $y_2(t)$ are solutions of the 2^{nd} order linear homogeneous equation P(t)y'' + Q(t)y' + R(t)y = 0 over the interval a < t < b, then $y = C_1 y_1(t) + C_2 y_2(t)$ is also a solution for any constants C_1 and C_2 .
- (d) THEOREM (Homogeneous) If $y_1(t)$ and $y_2(t)$ are solutions of the linear homogeneous equation P(t)y'' + Q(t)y' + R(t)y = 0 in some interval I and $W(y_1, y_2) \neq 0$ for some t_1 in I, then the general solution is $y_c(t) = C_1 y_1(t) + C_2 y_2(t)$. This is usually called the *complementary solution* and we say that $y_1(t), y_2(t)$ form a Fundamental Set of Solutions (FSS) to the differential equation.
- (e) **THEOREM (Nonhomogeneous)** The general solution of the nonhomogeneous equation

$$P(t)y'' + Q(t)y' + R(t)y = G(t)$$

is $y(t) = y_c(t) + y_p(t)$, where $y_c(t) = C_1 y_1(t) + C_2 y_2(t)$ is the general solution of the corresponding homogeneous equation P(t)y'' + Q(t)y' + R(t)y = 0 and $y_p(t)$ is a particular solution of the nonhomogeneous equation P(t)y'' + Q(t)y' + R(t)y = G(t).

(f) <u>Useful Remark</u>: If $y_{p_1}(t)$ is a particular solution of $P(t)y'' + Q(t)y' + R(t)y = G_1(t)$ and if $y_{p_2}(t)$ is a particular solution of $P(t)y'' + Q(t)y' + R(t)y = G_2(t)$, then

$$y_p(t) = y_{p_1}(t) + y_{p_2}(t)$$

is a particular solution of $P(t)y'' + Q(t)y' + R(t)y = [G_1(t) + G_2(t)]$.

- (4) Reduction of Order. If $y_1(t)$ is one solution of P(t)y'' + Q(t)y' + R(t)y = 0, then a second solution may be obtained using the substitution $y = v(t)y_1(t)$. This reduces the original 2^{nd} order equation to a 1^{st} equation using the substitution $y = \frac{dv}{dt}$. Solve that first order equation for w, then since $w = \frac{dv}{dt}$, solve this 1^{st} order equation to determine the function v.
- (5) Finding A Particular Solution $y_p(t)$ to Nonhomogeneous Equations.

You can always use the method of Variation of Parameters to find a particular solution $y_p(t)$ of the linear nonhomogeneous equation y'' + p(t)y' + q(t)y = g(t). Variation of Parameters may require integration techniques.

If the coefficients of the differential equation are <u>constants</u> rather than functions **and** if g(t) has a very special form (see table below), it is usually easier to use Undetermined Coefficients:

(a) Undetermined Coefficients - **IF** ay'' + by' + cy = g(t) **AND** g(t) is as below:

g(t)	Form of $y_p(t)$
$P_m(t) = a_m t^m + a_{m-1} t^{m-1} + \dots + a_0$	$t^{s} \{ A_{m} t^{m} + A_{m-1} t^{m-1} + \dots + A_{0} \}$
$e^{\alpha t} P_m(t)$	$t^{s} \left\{ e^{\alpha t} \left(A_{m} t^{m} + A_{m-1} t^{m-1} + \dots + A_{0} \right) \right\}$
$e^{\alpha t} P_m(t) \cos \beta t$ or $e^{\alpha t} P_m(t) \sin \beta t$	$t^{s} \left\{ e^{\alpha t} \left[F_{m}(t) \cos \beta t + G_{m}(t) \sin \beta t \right] \right\}$

where s =the <u>smallest</u> nonnegative integer (s = 0, 1 or 2) such that no term of $y_p(t)$ is a solution of the corresponding homogeneous equation. In other words, no term of $y_p(t)$ is a term of $y_c(t)$. $(F_m(t), G_m(t))$ are both polynomials of degree m.)

(b) <u>Variation of Parameters</u> - If $y_1(t)$ and $y_2(t)$ are two independent solutions of the homogeneous equation y'' + p(t) y' + q(t) y = 0, then a particular solution $y_p(t)$ of the nonhomogeneous equation

$$y'' + p(t) y' + q(t) y = g(t)$$
 (*)

has the form

$$y_p(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$$

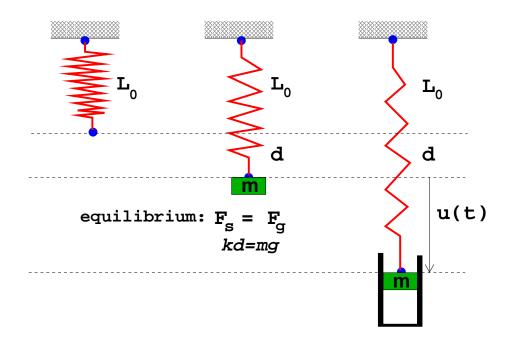
where

$$u_{1}' = \frac{\begin{vmatrix} 0 & y_{2} \\ g(t) & y_{2}' \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix}}, \quad u_{2}' = \frac{\begin{vmatrix} y_{1} & 0 \\ y_{1}' & g(t) \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix}}.$$

Remember: Coefficient of y'' in (*) must be "1" in order to use the above formulas.

(6) Spring-Mass Systems $\begin{cases} m u'' + \gamma u' + k u = F(t) \\ u(0) = u_0, \ u'(0) = u_1 \end{cases}$

 $m = \text{mass of object}, \quad \gamma = \text{damping constant}, \quad k = \text{spring constant}, \quad F(t) = \text{external force Weight}$ $w = m g, \quad \text{Hooke's Law}: \quad F_s = k d,$



- Undamped Free Vibrations: m u'' + k u = 0 (Simple Harmonic Motion) Note that $A\cos \omega_0 t + B\sin \omega_0 t = R\cos(\omega_0 t - \delta)$, where $R = \sqrt{A^2 + B^2} = amplitude$, $\omega_0 = frequency$, $\frac{2\pi}{\omega_0} = period$ and $\delta = phase shift$ determined by $\tan \delta = \frac{B}{A}$.
- $\boxed{ \text{II} \quad \text{Damped Free Vibrations} : \quad m \, u'' + \gamma \, u' + k \, u = 0 }$
 - (i) $\gamma^2 4km > 0$ (overdamped) \iff distinct real roots to CE
 - (ii) $\gamma^2 4km = 0$ (critically damped) \iff repeated roots to CE
 - (iii) $\gamma^2 4km < 0$ (underdamped) \iff complex roots to CE (motion is oscillatory)
- III Forced Vibrations: $(F(t) = F_0 \cos \omega t \text{ or } F(t) = F_0 \sin \omega t$, for example)
 - (i) $\underline{m} \, u'' + \gamma \, u' + k \, u = F(t)$ (Damped) In this case if you write the general solution as $u(t) = \overline{u_T(t) + u_\infty(t)}$, then $u_T(t) = Transient \ Solution$ (i.e. the part of u(t) such that $u_T(t) \longrightarrow 0$ as $t \longrightarrow \infty$) and $u_\infty(t) = Steady-State \ Solution$ (the solution behaves like this function in the long run).
 - (ii) $\underline{m\,u'' + k\,u = F_0\,\cos\omega t}$ (Undamped) If $\omega = \omega_0 = \sqrt{\frac{k}{m}} \Rightarrow \underline{\text{Resonance}}$ occurs and the solution is unbounded; while if $\omega \neq \omega_0$ then motion is a series of beats (solution is bounded)

(7) nth Order Linear Homogeneous Equations With Constant Coefficients

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$
 (*)

This differential equation has n independent solutions.

Characteristic Equation: $a_0r^n + a_1r^{n-1} + \cdots + a_{n-1}r + a_n = 0$ will have \boldsymbol{n} characteristic roots that may be real and distinct, repeated, complex, or complex and repeated.

- (a) For each real root r that is not repeated \Rightarrow get a solution of (*): e^{rt}
- (b) For each real root r that is repeated \underline{m} times \Rightarrow get \underline{m} independent solutions of (*):

$$e^{rt}, te^{rt}, t^2e^{rt}, \cdots, t^{m-1}e^{rt}$$

(c) For each complex root $r = \lambda + i\mu$ repeated $\underline{\boldsymbol{m}}$ times \Rightarrow get $\underline{\boldsymbol{2m}}$ solutions of (*): $e^{\lambda t} \cos \mu t$, $te^{\lambda t} \cos \mu t$, \cdots , $t^{m-1}e^{\lambda t} \cos \mu t$ and $e^{\lambda t} \sin \mu t$, $te^{\lambda t} \sin \mu t$, \cdots , $t^{m-1}e^{\lambda t} \sin \mu t$ (don't need to consider its conjugate root $\lambda - i\mu$)

(8) Undetermined Coefficients for n^{th} Order Linear Equations

This can only be used to find $y_p(t)$ of $a_0y^{(n)} + a_1y^{(n-1)} + \cdots + a_{n-1}y' + a_ny = g(t)$ and g(t) one of the 3 very SPECIAL FORMS in table in (5) above. The particular solution has the same form as before: $y_p(t) = t^s [\cdots]$, where s = the smallest nonnegative integer such that no term of $y_p(t)$ is a term of $y_c(t)$, except this time $s = 0, 1, 2, \ldots, n$.

(9) Laplace Transforms

(a) Be able to compute Laplace transforms using definition:

$$\mathcal{L}{f(t)} = F(s) = \int_0^\infty e^{-st} f(t) dt$$

and using a table of Laplace transforms (see table on page 317) and using linearity : $\mathcal{L}\{f(t) + g(t)\} = \mathcal{L}\{f(t)\} + \mathcal{L}\{g(t)\}$, $\mathcal{L}\{c f(t)\} = c \mathcal{L}\{f(t)\}$.

- (b) Computing Inverse Laplace Transforms: Must be able to use a table of Laplace transforms usually together with Partial Fractions or Completing the Square, to find inverse Laplace transforms: $f(t) = \mathcal{L}^{-1}\{F(s)\}$.
- (c) Solving Initial Value Problems: Recall that

$$\mathcal{L}\{y'\} = s \mathcal{L}\{y\} - y(0)$$

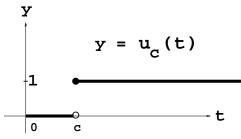
$$\mathcal{L}\{y''\} = s^2 \mathcal{L}\{y\} - s y(0) - y'(0)$$

$$\mathcal{L}\{y'''\} = s^3 \mathcal{L}\{y\} - s^2 y(0) - s y'(0) - y''(0)$$

$$\vdots$$

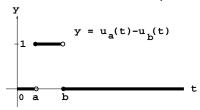
(d) Discontinuous Functions:

(i) <u>Unit Step Function</u> (Heaviside Function) : If $c \ge 0$, $u_c(t) = \begin{cases} 0, & t < c \\ 1, & t \ge c \end{cases}$

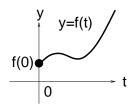


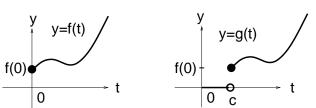
$$\mathcal{L}\{u_c(t)\} = \frac{e^{-cs}}{s}$$

(ii) <u>Unit "Pulse" Function</u>: $u_a(t) - u_b(t) = \begin{cases} 1, & a \le t < b \\ 0, & \text{otherwise} \end{cases}$



(iii) <u>Translated Functions</u>: $y = g(t) = \begin{cases} 0, & t < c \\ f(t-c), & t \ge c \end{cases} = u_c(t) f(t-c).$





$$\mathcal{L}\{u_c(t) f(t-c)\} = e^{-cs} F(s)$$
, where $F(s) = \mathcal{L}\{f(t)\}$

Thus,

$$\mathcal{L}^{-1}\{e^{-cs} F(s)\} = u_c(t) f(t-c), \text{ where } f(t) = \mathcal{L}^{-1}\{F(s)\}$$

A useful formula $\ \underline{\underline{\mathbf{NOT}}}\$ in the book :

$$\mathcal{L}\{u_c(t)\,h(t)\}=e^{\,-c\,s}\,\mathcal{L}\{h(t+c)\}$$

(iv) <u>Unit Impulse Functions</u>: If $y = \delta(t - c)$ ($c \ge 0$), then $\mathcal{L}\{\delta(t - c)\} = e^{-cs}$

$$\mathcal{L}\left\{\delta(t-c)\right\} = e^{-cs}$$

(e) <u>Convolutions</u>:

$$\mathcal{L}\{(f*g)(t)\} = \mathcal{L}\left\{\int_0^t f(t-\tau)g(\tau)d\tau\right\} = \mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}$$

(10) Systems of Linear Differential Equations : $\mathbf{x}'(t) = \mathbf{A} \mathbf{x}(t)$

(a) Rewrite a single n^{th} order equation $p_0(t)y^{(n)} + p_1(t)y^{(n-1)} + \cdots + p_n(t)y = g(t)$ as a system of 1^{st} order equations. Use the substitution:

- (b) Existence & Uniqueness Theorem for Systems. If $\mathbf{P}(t)$ and $\mathbf{g}(t)$ are continuous on an interval $\alpha < t < \beta$ containing t_0 , then the IVP $\begin{cases} \mathbf{x}'(t) = \mathbf{P}(t) \mathbf{x}(t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$ has a unique solution $\mathbf{x}(t)$ defined on the interval $\alpha < t < \beta$.
- (c) The set of vectors $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots, \mathbf{x}^{(m)}\}$ is linearly independent if the equation

$$k_1\mathbf{x}^{(1)} + k_2\mathbf{x}^{(2)} + \dots + k_m\mathbf{x}^{(m)} = \mathbf{0}$$

is satisfied only for $k_1 = k_2 = \cdots = k_m = 0$. This means you cannot write any one of these vectors as a linear combination of the others.

- (d) Solve 2×2 systems of 1^{st} order equations $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ i.e., $\mathbf{x}' = A\mathbf{x}$ using :
 - (i) <u>Elimination Method</u>: Basic idea eliminate one of the unknowns (either x_1 or x_2) from the original system to get an equivalent single 2^{nd} order differential equation.
 - (ii) Eigenvalues & Eigenvectors Method : See (11) below for solutions via this method and corresponding phase portraits.

<u>Eigenvalue</u>: If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then the eigenvalues of A are the roots of

$$|A - \lambda I| = \begin{vmatrix} (a - \lambda) & b \\ c & (d - \lambda) \end{vmatrix} = 0$$

 $\underline{\mathtt{Eigenvector}}: \quad \vec{\mathbf{v}} = \left(\begin{array}{c} v_1 \\ v_2 \end{array} \right) \neq \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \text{ is a } \underline{\mathit{nonzero}} \text{ solution to } \left(A - \lambda \, I \right) \vec{\mathbf{v}} = \vec{\mathbf{0}} \enspace.$

(e) If
$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \end{pmatrix}$$
 and if $\mathbf{x}^{(2)}(t) = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \end{pmatrix}$, then the *Wronskian* is

$$W[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}] = \begin{vmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{vmatrix}.$$

If $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are solutions of $\mathbf{x}' = \mathbf{A} \mathbf{x}$ and $W[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}](t_1) \neq 0$, then the set $\{\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)\}$ forms a Fundamental Set of Solutions of the system and a Fundamental Matrix is

$$\Phi(t) = \begin{pmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{pmatrix}.$$

(11) Eigenvalue & Eigenvector Method and Phase Portraits : x' = Ax

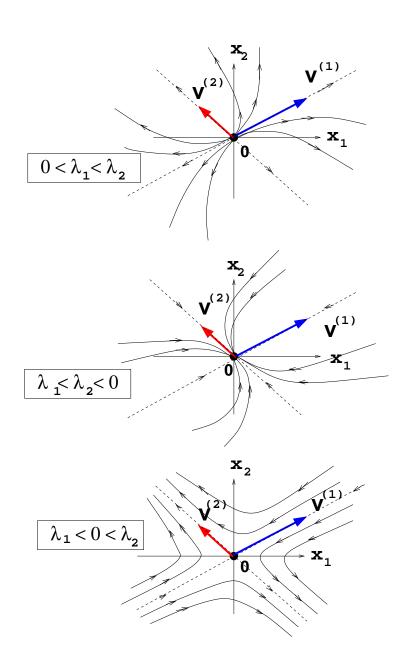
The following describes how to find the general solution to (*) and plot solutions (trajectories). A plot of the trajectories of a given homogeneous system

$$\mathbf{x}' = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \mathbf{x} \quad (*)$$

is called a **phase portrait**. To sketch the phase portrait, we need to find the corresponding eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and then consider 3 cases :

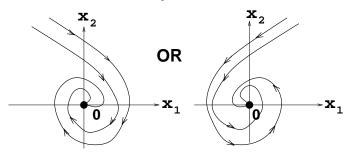
(a) $\underline{\lambda_1 < \lambda_2}$, real and distinct: If $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ are e-vectors corresponding to λ_1 and λ_2 , respectively $\Rightarrow \mathbf{x}^{(1)}(t) = e^{\lambda_1 t} \mathbf{v}^{(1)}$ and $\mathbf{x}^{(2)}(t) = e^{\lambda_2 t} \mathbf{v}^{(2)}$ are solutions and hence general solution of (*) is $\mathbf{x}(t) = C_1 \mathbf{x}^{(1)}(t) + C_2 \mathbf{x}^{(2)}(t)$ and hence if $[\lambda_1 < \lambda_2]$:

$$\mathbf{x}(t) = \underbrace{C_1 \, e^{\lambda_1 t} \, \mathbf{v}^{\,(1)}}_{\substack{\text{dominates} \\ \text{as } t \, \longrightarrow \, -\infty}} + \underbrace{C_2 \, e^{\lambda_2 t} \, \mathbf{v}^{\,(2)}}_{\substack{\text{dominates} \\ \text{as } t \, \longrightarrow \, \infty}}$$



(b) $\underline{\lambda_1 = \alpha + i \beta}$: If $\mathbf{w} = \mathbf{a} + i \mathbf{b}$ is a complex e-vector corresponding to λ_1 then \Rightarrow $\mathbf{x}^{(1)}(t) = \Re e \left\{ e^{\lambda_1 t} \mathbf{w} \right\} = e^{\alpha t} \left(\mathbf{a} \cos \beta t - \mathbf{b} \sin \beta t \right)$ and $\mathbf{x}^{(2)}(t) = \Im m \left\{ e^{\lambda_1 t} \mathbf{w} \right\} = e^{\alpha t} \left(\mathbf{a} \sin \beta t + \mathbf{b} \cos \beta t \right)$ are real-valued solutions and hence general solution of (*) is $\mathbf{x}(t) = C_1 \mathbf{x}^{(1)}(t) + C_2 \mathbf{x}^{(2)}(t)$.

If say $\alpha < 0$:



(Test a point to decide which)

(c) $\underline{\lambda_1 = \lambda_2}$: If there is only *one* linearly independent eigenvector corresponding to λ_1 , then solutions to $\mathbf{x}' = \mathbf{A} \mathbf{x}$ are $\mathbf{x}^{(1)}(t) = e^{\lambda_1 t} \mathbf{v}$ and $\mathbf{x}^{(2)}(t) = t e^{\lambda_1 t} \mathbf{v} + e^{\lambda_1 t} \mathbf{a}$, where

$$(A - \lambda_1 I) \mathbf{v} = \mathbf{0}$$
$$(A - \lambda_1 I) \mathbf{a} = \mathbf{v}$$

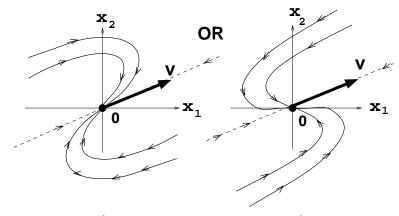
 $(\mathbf{v} \text{ is an eigenvector of } \mathbf{A}, \text{ while } \mathbf{a} \text{ is called a "generalized eigenvector" of } \mathbf{A})$

The general solution of the system (*) is $\mathbf{x}(t) = C_1 \mathbf{x}^{(1)}(t) + C_2 \mathbf{x}^{(2)}(t)$ and hence:

$$\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v} + C_2 \left[\underbrace{t e^{\lambda_1 t} \mathbf{v}}_{\text{dominates}} + e^{\lambda_1 t} \mathbf{a} \right]$$

$$\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v} + C_2 \left[\underbrace{t e^{\lambda_1 t} \mathbf{v}}_{\text{dominates}} + e^{\lambda_1 t} \mathbf{a} \right]$$

If say $\lambda_1 < 0$:



(Test a point to decide which)

(12) Particular Solutions to Nonhomogeneous Linear Systems:

$$\mathbf{x}' = \mathbf{A} \mathbf{x} + \mathbf{g}(t)$$

- (a) <u>Undetermined Coefficients for Systems</u> The column vector $\vec{\mathbf{g}}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix}$ must have each component function $g_1(t)$ and $g_2(t)$ as one of the three special forms like those for Undetermined Coefficients for regular 2^{nd} order equations and \mathbf{A} must be a constant matrix. The main difference is if say $\mathbf{g}(t) = \mathbf{u} e^{\lambda t}$ and λ is also an eigenvalue of \mathbf{A} , then try a particular solution of the form $\mathbf{x}_p = \mathbf{a} t e^{\lambda t} + \mathbf{b} e^{\lambda t}$.
- (b) Variation of Parameters for Systems : $\mathbf{x}' = \mathbf{A}(\mathbf{t}) \mathbf{x} + \mathbf{g}(t)$:

$$\mathbf{x}_p(t) = \Phi(t) \int \Phi^{-1}(t) \,\mathbf{g}(t) \,dt \,,$$

where $\Phi(t)$ is a Fundamental Matrix of the homogeneous system $\mathbf{x}' = \mathbf{A}(\mathbf{t}) \mathbf{x} + \mathbf{g}(t)$ can have any form and \mathbf{A} need not be a constant matrix.

PRACTICE PROBLEMS

- [1] For what value of α will the solution to the IVP $\begin{cases} y'' y' 2y = 0 \\ y(0) = \alpha \end{cases}$ satisfy $y \to 0$ as $t \to \infty$? y'(0) = 2
- [2] (a) Show that $y_1 = x$ and $y_2 = x^{-1}$ are solutions of the differential equation $x^2y'' + xy' y = 0$.
 - (b) Evaluate the Wronskian $W(y_2, y_1)$ at $x = \frac{1}{2}$.
 - (c) Find the solution of the initial value problem $x^2y'' + xy' y = 0$, y(1) = 2, y'(1) = 4.
- [3] Find the largest open interval for which the initial value problem

$$3x^2y'' + y' + \frac{1}{x-2}y = \frac{1}{x-3}$$
, $y(1) = 3$, $y'(1) = 2$, has a solution.

In Problems 4, 5, and 6 find the general solution of the homogeneous differential equations in (a) and use the method of **Undetermined Coefficients** to find a particular solution y_p in (b) and find the <u>FORM</u> of a particular solution (c).

- [4] (a) y'' 5y' + 6y = 0 (b) $y'' 5y' + 6y = t^2$ (c) $y'' 5y' + 6y = e^{2t} + \cos(3t)$
- [5] (a) y'' 6y' + 9y = 0 (b) $y'' 6y' + 9y = te^{3t}$ (c) $y'' 6y' + 9y = e^t + \cos(3t)$
- [6] (a) y'' 2y' + 10y = 0 (b) $y'' 2y' + 10y = e^x + \cos(3x)$ (c) $y'' 2y' + 10y = e^x \cos(3x)$
- [7] Find the general solution to (a) $y'' + y' 6y = 7e^{4t}$ (b) $y'' + y' 6y = 7e^{4t} 100 \sin t$
- [8] Solve this IVP: y'' y' = 4t, y(0) = 0, y'(0) = 0.
- [9] Find the general solution to $y'' + y = \tan t$, $0 < x < \frac{\pi}{2}$.
- [10] The differential equation $x^2y'' 2xy' + 2y = 0$ has solutions $y_1(x) = x$ and $y_2 = x^2$. Use the method of Variation of Parameters to find a solution of $x^2y'' 2xy' + 2y = 2x^2$.
- [11] The differential equation $x^2y'' + xy' y = 0$ has one solution $y_1(x) = x$. Use the method of **Reduction** of **Order** to find a second (linearly independent) solution of $x^2y'' + xy' y = 0$.
- [12] For what nonnegative values of γ will the the solution of the initial value problem $u'' + \gamma u' + 4u = 0$, u(0) = 4, u'(0) = 0 oscillate?
- [13] (a) For what positive values of k does the solution of the initial value problem $2u'' + ku = 3\cos(2t), \ u(0) = 0, \ u'(0) = 0, \ become \ unbounded$ (Resonance)?

- (b) For what positive values of k does the solution of the initial value problem $2u'' + u' + ku = 3\cos(2t), \ u(0) = 0, \ u'(0) = 0, \ become \ unbounded \ (Resonance)$?
- [14] Find the steady-state solution of the IVP $y'' + 4y' + 4y = \sin t$, y(0) = 0, y'(0) = 0.
- [15] A 4-kg mass stretches a spring 0.392 m. If the mass is released from 1 m below the equilibrium position with a downward velocity of 10 m/sec, what is the maximum displacement?

In Problems 16 and 17 find the general solution of the homogeneous differential equations in (a) and use the method of **Undetermined Coefficients** to find the <u>FORM</u> of a particular solution of the nonhomogeneous equation in (b).

[16] (a)
$$y''' - y' = 0$$

(b)
$$y''' - y' = t + e^t$$

[17] (a)
$$y''' - y'' - y' + y = 0$$

[16] (a)
$$y''' - y' = 0$$
 (b) $y''' - y' = t + e^t$
[17] (a) $y''' - y'' - y' + y = 0$ (b) $y''' - y'' - y' + y = e^t + \cos t$

- [18] Find the solution of the initial value problem y''' 2y'' + y' = 0, y(0) = 2, y'(0) = 0, y''(0) = 1.
- [19] Find the general solution of the differential equation $y''' + y' = t^2$.
- [20] Find the general solution of $y'' + 4y' = -10\cos 2t$.
- [21] Find a fundamental set of solutions of $y^{(5)} 4y''' = 0$.
- [22] Find the Laplace transform of these functions:

(a)
$$f(t) = 3 - e^{2t}$$

(b)
$$q(t) = 100 t^5$$

(b)
$$g(t) = 100 t^5$$
 (c) $h(t) = \cosh \pi t$ (d) $k(t) = -10t^3 e^{5t}$

(d)
$$k(t) = -10t^3e^5$$

[23] Find the inverse Laplace transform of

(a)
$$F(s) = \frac{9}{s^2 - s - 2}$$
 (b) $F(s) = \frac{s}{(s - 1)^2}$ (c) $F(s) = \frac{8}{(s + 1)^4}$ (d) $F(s) = \frac{3s + 2}{s^2 + 2s + 5}$

(b)
$$F(s) = \frac{s}{(s-1)^2}$$

(c)
$$F(s) = \frac{8}{(s+1)^4}$$

(d)
$$F(s) = \frac{3s+2}{s^2+2s+1}$$

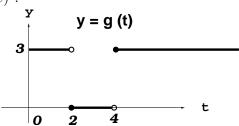
(a)
$$\begin{cases} y'' - y' - 6y = \\ y(0) = 1 \\ y'(0) = -1 \end{cases}$$

[24] Solve these initial value problems: (a)
$$\begin{cases} y'' - y' - 6y = 0 \\ y(0) = 1 \\ y'(0) = -1 \end{cases}$$
 (b)
$$\begin{cases} y'' - 2y' + 2y = \cos t \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

(c)
$$y'' - y = \begin{cases} 1, & t < 5 \\ 2, & 5 \le t < \infty \end{cases}$$
; $y(0) = y'(0) = 0$.

(d)
$$y'' + 4y = \begin{cases} t, & t < 1 \\ 0, & 1 < t < \infty \end{cases}$$
; $y(0) = y'(0) = 0$.

(e)
$$y' + y = g(t), y(0) = 0$$
 and where $g(t)$:



(f)
$$y'' + 4y = \delta(t - 3)$$
, $y(0) = y'(0) = 0$

[25]
$$\mathcal{L}\left\{\int_0^t 100 e^{-2\tau} \cos \pi (t-\tau) d\tau\right\} = ?$$

[26] If
$$g(t) = \mathcal{L}^{-1}\{G(s)\}$$
, then $\mathcal{L}^{-1}\left\{\frac{G(s)}{(s-3)^2}\right\} = ?$

- [27] Use the Elimination Method to solve the system $\begin{cases} x_1' = x_1 + x_2 \\ x_2' = 4x_1 + x_2 \end{cases}$
- [28] Rewrite the 2^{nd} order differential equation $y'' + 2y' + 3ty = \cos t$ with y(0) = 1, y'(0) = 4 as a system of 1^{st} order differential equations.
- [29] Find eigenvalues and corresponding eigenvectors of (a) $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ (b) $A = \begin{pmatrix} -2 & 0 \\ 1 & -1 \end{pmatrix}$

[30] Find the solution of the IVP
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$
 Find a fundamental matrix $\Phi(t)$.

[31] Solve
$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \vec{\mathbf{x}}(0) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}.$$

[32] Find the general solution of the system
$$\vec{\mathbf{x}}'(t) = A\vec{\mathbf{x}}(t)$$
, where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- [33] Tank # 1 initially holds 50 gals of brine with a concentration of 1 lb/gal, while Tank # 2 initially holds 25 gals of brine with a concentration of 3 lb/gal. Pure H₂O flows into Tank # 1 at 5 gal/min. The well-stirred solution from Tank # 1 then flows into Tank # 2 at 5 gal/min . The solution in Tank # 2 flows out at 5 gal/min. Set up and solve an IVP that gives $x_1(t)$ and $x_2(t)$, the amount of salt in Tanks # 1 and # 2, respectively, at time t.
- [34] Tank # 1 initially holds 50 gals of brine with concentration of 1 lb/gal and Tank # 2 initially holds 25 gals of brine with concentration 3 lb/gal. The solution in Tank # 1 flows at 5 gal/min into Tank # 2, while the solution in Tank # 2 flows back into Tank # 1 at 5 gal/min. Set up an IVP that gives $x_1(t)$ and $x_2(t)$, the amount of salt in Tanks # 1 and # 2, respectively, at time t.

[35] Find the general solution of
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} -2 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^t$$
.

[36] Find a particular solution of
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
.

[37] Find the general solution of
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} 6e^{-t} \\ 1 \end{pmatrix}$$
.

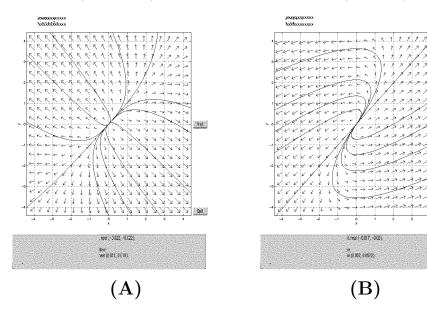
[38] Match the phase portraits shown below that best corresponds to each of the given systems of differential equations:

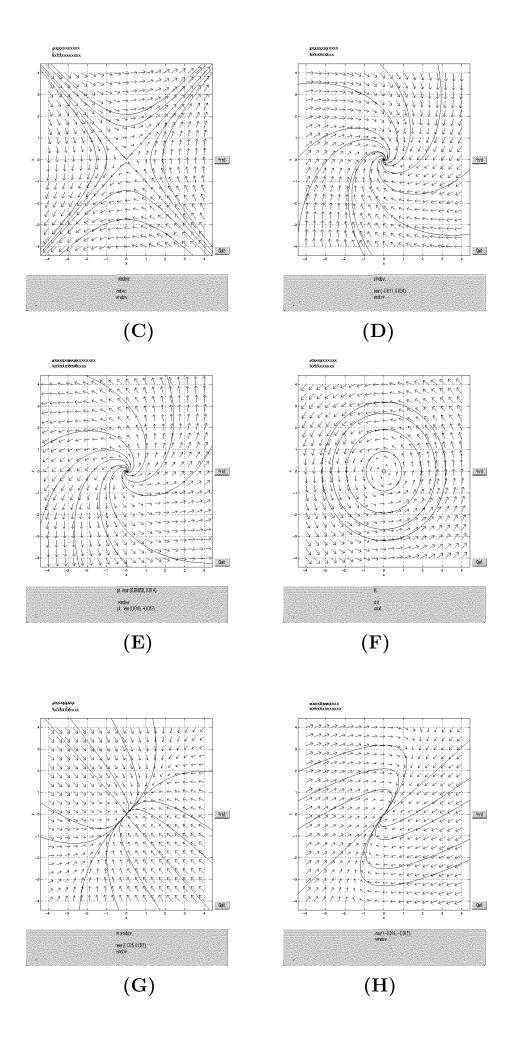
(i)
$$\vec{\mathbf{x}}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \vec{\mathbf{x}}$$
; Solution: $\vec{\mathbf{x}}(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}$

(ii)
$$\vec{\mathbf{x}}' = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \vec{\mathbf{x}}$$
; Solution : $\vec{\mathbf{x}}(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3t}$

(iii)
$$\vec{\mathbf{x}}' = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \vec{\mathbf{x}}$$
; Solution: $\vec{\mathbf{x}}(t) = C_1 \begin{pmatrix} 2 \\ 2 \end{pmatrix} e^t + C_2 e^t \left\{ \begin{pmatrix} 2 \\ 2 \end{pmatrix} t + \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$

(iv)
$$\vec{\mathbf{x}}' = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} \vec{\mathbf{x}}$$
; Solution: $\vec{\mathbf{x}}(t) = C_1 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} e^{-t}$





Answers

$$\begin{array}{ll} [1] & \alpha = -2 & [2] & (b) \ W(x^{-1},x)(\frac{1}{2}) = 4 \ ; \ (c) \ y = 3x - x^{-1} & [3] \ 0 < x < 2 \\ [4] & (a) \ y = C_1e^{2t} + C_2e^{3t} & (b) \ y = At^2 + Bt + C \ (c) \ y = Ate^{2t} + B\cos(3t) + C\sin(3t) \\ [5] & (a) \ y = C_1e^{2t} + C_2te^{3t} & (b) \ y = t^2(At + B)e^{3t} & (c) \ y = Ae^t + B\cos(3t) + C\sin(3t) \\ [6] & (a) \ y = C_1e^{2t} \cos(3x) + C_2e^{2t} \sin(3x) & (b) \ y = Ae^x + B\cos(3x) + C\sin(3x) \\ & (c) \ y = x(A\cos(3x) + B\sin(3x))e^x \\ & (c) \ y = x(A\cos(3x) + B\sin(3x))e^x \\ & (c) \ y = x(A\cot(3x) + B\sin(3x))e^x \\ & (d) \ y = C_1e^{-3t} + C_2e^{2t} + \frac{1}{2}e^{4t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{2t} + \frac{1}{2}e^{4t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{2t} + \frac{1}{2}e^{4t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{2t} + \frac{1}{2}e^{4t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{2t} + \frac{1}{2}e^{4t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{2t} + \frac{1}{2}e^{4t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{2t} + \frac{1}{2}e^{4t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{2t} + \frac{1}{2}e^{4t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{2t} + C_2e^{2t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{2t} \\ & (b) \ y = At^2e^{-3t} + C_2e^{2t} + \frac{1}{2}e^{4t} \\ & (b) \ y = C_1e^{-3t} + C_2e^{-3t} \\ & (b) \ y = At^2e^{-3t} + B\cos t + C\sin t \\ & (b) \ y = C_1e^{-3t} + C_2e^{-3t} + C_2e^{-3t} \\ & (b) \ y = At^2e^{-3t} + B\cos t + C\sin t \\ & (b) \ y = C_1e^{-3t} + C_2e^{-3t} + C_2e^{-3t} \\ & (b) \ y = \frac{1}{2}e^{2t} + B\cos t + C\sin t \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-2t}) \\ & (b) \ y = \frac{1}{2}(\cos t - 2\sin t + 4e^{t}\cos t - 2e^{t}\sin t) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (c) \ y = -1 + \frac{1}{2}(e^{t} + e^{-t}) \\ & (e) \ y = \frac{1}{2}(e^{t} + C_2e^{t} \\ & (e)$$

Solution: $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 50e^{-\frac{t}{10}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 25e^{-\frac{t}{5}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\begin{bmatrix} \mathbf{34} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} -\frac{1}{10} & \frac{1}{5} \\ \frac{1}{10} & -\frac{1}{5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 50 \\ 75 \end{pmatrix} \\
\text{Solution} : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{125}{3} \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \frac{100}{3} e^{-\frac{3t}{10}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\
\begin{bmatrix} \mathbf{35} \end{bmatrix} \quad \mathbf{x}(t) = C_1 e^{-t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + C_2 e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{bmatrix} \mathbf{36} \end{bmatrix} \quad \mathbf{x}_p(t) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\
\begin{bmatrix} \mathbf{37} \end{bmatrix} \quad \mathbf{x}(t) = C_1 e^t \begin{pmatrix} 0 \\ 1 \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{-t} \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\
\begin{bmatrix} \mathbf{38} \end{bmatrix} \quad \text{(i) } \mathbf{C} \quad \text{(ii) } \mathbf{A} \quad \text{(iii) } \mathbf{B} \quad \text{(iv) } \mathbf{D}
\end{bmatrix}$$

$$f(t) = \mathcal{L}^{-1}\{F(s)\}$$

 $f^{(n)}(t)$

 $(-t)^n f(t)$

18.

19.

$$F(s) = \mathcal{L}\{f(t)\}\$$

 $s^n F(s) - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$

 $F^{(n)}(s)$