MA 16100 EXAM 1 Form 01 February 4, 2020 | NAME | YOUR TA'S NAME | |---|---| | STUDENT ID # | RECITATION TIME | | v | g at right now is GREEN! Write the following in the TEST/QUIZ NUMBER opriate spaces below the boxes): 01 | | $\underline{\text{TA}}$'s name and the $\underline{\text{COURSE}}$ n | he mark—sense sheet (answer sheet). On the mark—sense sheet, fill in your number. Fill in your NAME and STUDENT IDENTIFICATION NUMBER spaces. Fill in your four-digit SECTION NUMBER. If you do not know your ign the mark—sense sheet. | | Blacken in your choice of the co | worth 8 points (you will automatically earn 4 point for taking the exam). For example, and the spaces provided for questions 1–12. Do all your work in a confidence of the test pages for scrap paper. Turn in both the scantron and the example of the test pages for scrap paper. | | booklet. You may not leave the r | 20, you may leave the room after turning in the scantron sheet and the exam room before 6:50. If you don't finish before 7:20, you MUST REMAIN SEATED as your scantron sheet and your exam booklet. | | | EXAM POLICIES | | 1. Students may not ope | en the exam until instructed to do so. | | 2. Students must obey t | the orders and requests by all proctors, TAs, and lecturers. | | 3. No student may leave | e in the first 20 min or in the last 10 min of the exam. | | they should not even | tors, or any electronic devices are not allowed on the exam, and
be in sight in the exam room. Students may not look at anybody
of communicate with anybody else except, if they have a question,
urer. | | · | he students have to put down all writing instruments and remain he TAs will collect the scantrons and the exams. | | • | e rules and any act of academic dishonesty may result in severe lly, all violators will be reported to the Office of the Dean of | | I have read and understand | the exam rules stated above: | | STUDENT NAME: | | | STUDENT SIGNATURE: | | 1. Simplify $$\frac{3}{z^2 + 14z + 49} + \frac{2}{z^2 - 49}$$ - A. $\frac{5z 7}{(z 7)^2(z + 7)}$ - B. $\frac{5z-7}{(z-7)(z+7)^2}$ C. $\frac{5z-7}{(z-7)(z+7)}$ - D. $\frac{5z+7}{(z-7)(z+7)}$ - E. $\frac{5z+7}{(z-7)^2(z+7)}$ **2.** Find the domain of $f(x) = \sqrt{1 - \ln x}$ - A. $(-\infty, e]$ - B. (0, e] - C. (e, ∞) - D. (0,1] - E. [1, e] **3.** If $f(x) = \frac{4}{x-1}$ and g(x) = 2x, for what value(s) of x is $(f \circ g)(x) = (g \circ f)(x)$? - A. $\frac{1}{3}$ only - B. 2 only - C. 3 only - D. -1 or 2 - E. $\frac{1}{3}$ or 2 **4.** How can the graph of $y = 6(x+5)^2 + 2$ be obtained from the graph of $y = x^2$? - A. Shift the graph to the left 6 units, then compress the graph horizontally by a factor of 5. Then shift the graph up 2 units. - B. Shift the graph to the right 5 units, then stretch the graph horizontally by a factor of 6. Then shift the graph up 2 units. - C. Shift the graph to the right 5 units, then compress the graph vertically by a factor of 6. Then shift the graph down 2 units. - D. Shift the graph to the left 6 units, then stretch the graph horizontally by a factor of 5. Then shift the graph up 2 units. - E. Shift the graph to the left 5 units, then stretch the graph vertically by a factor of 6. Then shift the graph up 2 units. 5. Which of the following does NOT have an inverse function? - A. $y = \sin x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ - B. $y = x^3 + 2$ - C. $y = \frac{x}{x^2 + 1}$ - D. $y = \frac{1}{2}e^x$ - E. $y = \ln(x 2), x > 2$ **6.** Find the inverse of the function $f(x) = \frac{6x-1}{2x+9}$ - A. $\frac{-9x-1}{2x-6}$ - $B. \ \frac{9x+1}{2x+6}$ - C. $\frac{2x+9}{6x-1}$ - D. $\frac{9x+1}{2x-6}$ - E. $\ln(6x 1) \ln(2x 6)$ 7. Find all values of x in the interval $[0, 2\pi]$ satisfying the equation $2\sin x \cos x + \cos x = 0$ - A. $\frac{\pi}{2}$, $\frac{3\pi}{2}$ B. $\frac{7\pi}{6}$, $\frac{11\pi}{6}$ C. $\frac{\pi}{2}$, $\frac{7\pi}{6}$, $\frac{3\pi}{2}$, $\frac{11\pi}{6}$ D. $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ - E. No such values in the given interval **8.** How many of the following statements are true? - (I) When $\lim_{x\to a} f(x)$ exists, it is always equal to f(a) - (II) The value of $\lim_{x\to a}$ is always found by computing f(a) - (III) If $\lim_{x\to a} f(x)$ does not exist, then at least one of the one-sided limits $\left(\lim_{x\to a^+} f(x), \lim_{x\to a^-} f(x)\right)$ also does not exist - (IV) $\lim_{x\to 0^+} \sqrt{x} = \lim_{x\to 0^-} \sqrt{x}$ - A. 4 - B. 3 - C. 2 - D. 1 - E. 0 **9.** The graph of f(x) is shown below. Find $\lim_{x\to 5} f(x)$ - A. 6 - B. 5 - C. 4 - D. 3 - E. The limit does not exist - **10.** Evaluate the limit, if it exists: $$\lim_{x \to 0} \frac{\sqrt{3x^2 + 16} - 4}{x^2}$$ - A. 0 - B. $\sqrt{3}$ - C. 4 - D. $\frac{3}{8}$ - E. Does not exist **11.** Evaluate the limit: $$\lim_{x \to \frac{1}{5}^+} \frac{x}{10x - 2}$$ - A. $-\frac{1}{2}$ B. $\frac{1}{10}$ - C. ∞ - D. 0 - E. $-\infty$ - 12. Evaluate the limit, if it exists: $$\lim_{\theta \to 0^-} \frac{|\sin \theta|}{\cos^2 \theta - 1}$$ - A. 1 - B. 0 - C. ∞ - D. $-\infty$ - E. Does not exist