Study Guide for Exam 2

1. You are supposed to know how to carry out the integration by parts
 • Indefinite form \(\int u dv = uv - \int v du \)
 • Definite form \(\int_a^b u dv = [uv]_a^b - \int_a^b v du \)

Example Problems
1.1. Compute the following integrals:
 (i) \(\int x e^x dx \)
 (ii) \(\int e^x \sin x dx \)
 (iii) \(\int \ln x dx \)
 (iv) \(\int \sin^{-1} x dx \)

1.2. Evaluate the following integrals
 (i) \(\int_0^{\pi/2} x \cos(2x) dx \)
 (ii) \(\int_0^{1/2} \sin^{-1} x dx \)
 (iii) \(\int_0^1 \tan^{-1} x dx \)

1.3. Find the volume of the solid obtained by rotating the following region about the y-axis: the region is bounded by \(y = f(x) = \sin x \) and the x-axis on the interval \([0, \pi] \).

2. You are supposed to know how to compute the integration of the form
 (1) \(\int \sin^m x \cos^n x \ dx \)
 • Case: \(m \) odd \(\rightarrow \) Use \(u = \cos x \) substitution
 • Case: \(n \) odd \(\rightarrow \) Use \(u = \sin x \) substitution
 • Case: \(m \) & \(n \) even \(\rightarrow \) Reduce the degree by double angle formula
 (2) \(\int \tan^m x \sec^n x \ dx \)
 • Case: \(n > 0 \) even \(\rightarrow \) Use \(u = \tan x \) substitution
 • Case: \(n > 0 \) odd & \(m \) odd \(\rightarrow \) Use \(u = \sec x \) substitution
 • Case: \(n > 0 \) & \(m \) even \(\rightarrow \) Integration by parts
 • Case: \(n = 0 \) \(\rightarrow \) Use \(\tan^2 x = \sec^2 x - 1 \) to reduce to the case \(n > 0 \) and to the lower degree case
Example Problems

2.1. Compute the following integrals:

(i) \(\int \sin^3 x \cos^2 x \, dx \)

(ii) \(\int \sin^2 x \cos^3 x \, dx \)

(iii) \(\int \sin^3 x \cos^3 x \, dx \)

(iv) \(\int \sin^4 x \cos^2 x \, dx \)

2.2. Compute the following integrals:

(i) \(\int \tan^2 x \sec^4 x \, dx \)

(ii) \(\int \sec^3 \tan x \, dx \)

(iii) \(\int \sec^3 x \, dx \).

(iv) \(\int \tan^2 x \sec x \, dx \).

(v) \(\int \tan^5 x \, dx \).

2.3.

(i) Compute \(\int \sec x \, dx = \int \frac{1}{\cos^2 x} \cos x \, dx = \int \frac{1}{1 - \sin^2 x} \cos x \, dx \)
using the substitution \(u = \sin x \) and then using the partial fraction.

(ii) Check that the result obtained in (i) coincides with the well-known formula \(\int \sec x \, dx = \ln |\sec x + \tan x| + C \).

2.4.

We would like to compute

\(\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx \)

in the following two ways.

(i) Use substitution \(u = \sin x \) to get

\[
\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = \int \frac{\sin x}{\cos^2 x} \, dx = \int \frac{\sin x}{1 - \sin^2 x} \, dx = \int \frac{u}{1 - u^2} \, du
\]

and then use the partial fractions.
(ii) Use the same substitution as above and then use another substitution $v = 1 - u^2$ to get
\[\int \tan x \, dx = \int \frac{u}{1 - u^2} \, du = \int -\frac{1}{2} \, dv \]
and compute.

(iii) Check that the results obtained in (i) and (ii) coincide with the well known formula $\int \tan x \, dx = \ln |\sec x| + C$.

3. You are supposed to know how to use the 3 types of trigonometric substitution, and carry out the integration accordingly.

1. $\sqrt{a^2 - x^2}, x = a \sin \theta, dx = a \cos \theta, \sqrt{a^2 - x^2} = a \cos \theta$,
2. $\sqrt{a^2 + x^2}, x = a \tan \theta, dx = a \sec^2 \theta, \sqrt{a^2 + x^2} = a \sec \theta$,
3. $\sqrt{x^2 - a^2}, x = a \sec \theta, dx = a \tan \theta \sec \theta, \sqrt{x^2 - a^2} = a \tan \theta$.

Example Problems

3.1. Compute the following integrals:

(i) $\int \frac{dx}{\sqrt{4 - x^2}}$

(ii) $\int \frac{\sqrt{5 - 4x^2}}{dx}$

(iii) $\int_0^6 \frac{\sqrt{x^2 - 9}}{x} \, dx$

(iv) $\int \frac{\sqrt{x^2 + 1}}{dx}$

(v) $\int \frac{\sqrt{3}}{x^2 \sqrt{x^2 + 1}} \, dx$

(vi) $\int \frac{\sqrt{3 - 2x - x^2}}{x^2 - 2x + 2} \, dx$

(vii) $\int \frac{\sqrt{x^2 - 2x + 10}}{x} \, dx$

(viii) $\int \frac{x}{\sqrt{3 + 2x - x^2}} \, dx$

3.2. Verify that the area of a circle of radius r is πr^2.

4. You are supposed to know
 - the proper form of the partial fractions,
 - how to determine the appropriate constants appearing in the partial fraction,
 - how to compute the integral accordingly.
Example Problems

4.1. Determine the proper form of the partial fractions for the following. (You do not have to calculate the constants.)

(i) \(\frac{1}{(x+2)(x^2-4)((x^2+x+1)^2} \)

(ii) \(\frac{1}{(x-1)(x^3-1)(x^2+4x+5)} \)

4.2. Compute the following integrals:

(i) \(\int \frac{x^2}{(x-1)^2} \, dx \)

(ii) \(\int \frac{x + 2}{x^2 + 2x + 2} \, dx \)

(iii) \(\int \frac{x}{(x + 1)(x - 1)(x - 2)} \, dx \)

(iv) \(\int \frac{x^2 + 2x + 2}{x^2 + 4x + 5} \, dx \)

(v) \(\int \frac{x^2 + x + 2}{x^2 + 4x + 5} \, dx \)

5. You are supposed to know why a given improper integral is improper, and accordingly to be able to determine if the given improper integral is convergent/divergent. In case it is convergent, you should be able to compute its value.

Example Problems

5.1. Evaluate the following improper integrals

(i) \(\int_0^{\infty} \frac{e^x}{e^{2x} + 1} \, dx \)

(ii) \(\int_0^3 \frac{e^x}{e^{2x} + 1} \, dx \)

(iii) \(\int_0^9 \frac{1}{x - 1} \, dx \)

(iv) \(\int_0^9 \frac{1}{\sqrt{x - 1}} \, dx \)

(v) \(\int_{-\infty}^{\infty} x \, dx \)

(vi) \(\int_0^{\infty} xe^{-x} \, dx \)

(vi) \(\int_{-\infty}^{\infty} xe^{-x^2} \, dx \)
6. You are supposed to be able to determine if a given sequence is convergent/divergent. In case it is convergent, you should be able to compute its limit.

Example Problems

6.1. Compute the limit $\lim_{n \to \infty} a_n$ of the following sequences:

(i) $a_n = \frac{(-1)^n n}{n^2 + 1}$

(ii) $a_n = \tan^{-1} \left(\frac{n^3 + 5}{n^2} \right)$

(iii) $a_n = (-1)^n \sin \left(\frac{\pi}{2} - \frac{1}{n} \right)$

(iv) $a_n = \cos(n\pi)$

(v) $a_n = \sin(n\pi)$

(vi) $a_n = \frac{n!n^2}{(n + 2)!} \cos(1/2n)$

(vii) $a_n = n \tan(1/n)$