
MA 16020 – EXAM FORMULAS
THE SECOND DERIVATIVE TEST

Suppose f is a function of two variables x and y, and that all the second-order partial derivatives
are continuous. Let

d = fxxfyy − (fxy)2

and suppose (a, b) is a critical point of f .
1. If d(a, b) > 0 and fxx(a, b) > 0, then f has a relative minimum at (a, b).
2. If d(a, b) > 0 and fxx(a, b) < 0, then f has a relative maximum at (a, b).
3. If d(a, b) < 0, then f has a saddle point at (a, b).
4. If d(a, b) = 0, the test is inconclusive.

LAGRANGE EQUATIONS
For the function f(x, y) subject to the constraint g(x, y) = c, the Lagrange equations are

fx = λgx fy = λgy g(x, y) = c
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