MA 16020 - EXAM FORMULAS

THE SECOND DERIVATIVE TEST
Suppose f is a function of two variables « and y, and that all the second-order partial derivatives
are continuous. Let

d = fa:mfyy - (fmy)2

and suppose (a, b) is a critical point of f.
1. If d(a,b) > 0 and f,5(a,b) > 0, then f has a relative minimum at (a, b).
2. If d(a,b) > 0 and f,.(a,b) <0, then f has a relative maximum at (a, b).
3. If d(a,b) < 0, then f has a saddle point at (a,b).
4. If d(a,b) = 0, the test is inconclusive.

LAGRANGE EQUATIONS
For the function f(z,y) subject to the constraint g(z,y) = ¢, the Lagrange equations are
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