Name: \qquad I.D.\#: \qquad

Section \#: \qquad TA's Name: \qquad

1. This package contains 8 pages and 14 problems, each worth 7 points. Mark your answers on the answer sheet, using a \#2 pencil. Turn in both this package and your answer sheet to your recitation instructor.
2. Be sure to fill in your name, ID\#, Section \#, and the name of your recitation instructor.
3. The exam lasts 60 minutes.
4. No books, notes, or calculators, please.
5. The inequality $(x-1)(x+2)(x-3)<0$ is solved by
A. $x \leq-2$ or $1<x<3$
B. $x<-2$ or $1<x<3$
C. $-2<x<1$ or $x>3$
D. $x<-3$ or $-1<x<2$
E. $-3<x<-1$ or $x>2$
6. The solutions of the equation $|x|=|1+2 x|$ are
A. $x=1$ and $x=\frac{1}{3}$
B. $x=-1$ and $x=-\frac{1}{3}$
C. $x=-1$ and $x=\frac{2}{3}$
D. $x=-2$ and $x=\frac{1}{3}$
E. None of the above
7. An equation of the line through $(1,2)$ and perpendicular to the line $3 x+2 y=4$ is
A. $-3 x+2 y-4=0$
B. $3 x+6 y-8=0$
C. $-2 x+3 y=4$
D. $x-3 y=-5$
E. None of the above
8. The graph of the function $f(x)=1+|x-1|$ looks most like
A.

B.

C.

D.

E.

9. The graph of the function $f(x)=\frac{1}{1+x^{2}}$ looks most like:
A.

B.

C.

D.

E.

10. If $f(x)=\sqrt{9-x^{2}}$ and $g(x)=\sqrt{x-1}$, the domain of the product $f(x) g(x)$ is
A. $1 \leq x \leq 3$
B. $1<x<3$
C. $-3 \leq x \leq-1$
D. $-3<x<1$
E. $-3 \leq x \leq 1$
11. Solve the inequality $\sin x>\frac{1}{2}$ for x in $[0, \pi]$.
A. $\frac{\pi}{4}<x<\frac{3 \pi}{4}$
B. $\frac{\pi}{6}<x<\frac{\pi}{3}$
C. $\frac{\pi}{2}<x$
D. $\frac{\pi}{6}<x<\frac{5 \pi}{6}$
E. $\frac{\pi}{3}<x<\frac{2 \pi}{3}$
12. Simplify $\frac{3^{\sqrt{2}} 9^{\sqrt{2}}}{3^{3 \sqrt{2}-1}}$.
A. 3
B. $\frac{1}{3}$
C. $3^{\sqrt{2}}$
D. 2
E. None of the above
13. If the position of a particle at time t is given by $f(t)=16 t^{2}$, its velocity at time $t=1$ is
A. 16
B. -16
C. 32
D. -32
E. 64
14. $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+3 x}=$
A. 0
B. 1
C. 2
D. 3
E. -3
15. Let $f(x)=\frac{3 x-3}{x-1}$ and $g(x)=\frac{x^{3}-1}{x^{2}+2 x+1}$. Which of the following statements is true?
A. Neither f nor g is continuous at $x=1$
B. Only f is continuous at $x=1$
C. Only g is continuous at $x=1$
D. Both f and g are continuous at $x=1$
E. Not enough information
16. $\lim _{x \rightarrow 0} x^{2} \cos \frac{2}{x}=$
A. 0
B. 1
C. 2
D. $\frac{1}{4}$
E. limit does not exist
17. $\lim _{x \rightarrow 2^{-}}\left(\frac{1}{x-2}-\frac{2}{x^{2}-4}\right)=$
A. 0
B. 1
C. ∞
D. $-\infty$
E. -1
18. Let $f(x)=\frac{2}{x}$ then $f^{\prime}(1)$ is
A. -2
B. -1
C. 0
D. 2
E. Does not exist
