Name:	I.D.#:
Section #:	.TA's Name:

- 1. This package contains 8 pages and 14 problems, each worth 7 points. Mark your answers on the answer sheet, using a #2 pencil. Turn in both this package and your answer sheet to your recitation instructor.
- 2. Be sure to fill in your name, ID#, Section #, and the name of your recitation instructor.
- 3. The exam lasts 60 minutes.
- 4. No books, notes, or calculators, please.

1. The inequality (x-1)(x+2)(x-3) < 0 is solved by

A.
$$x \le -2 \text{ or } 1 < x < 3$$

B.
$$x < -2$$
 or $1 < x < 3$

C.
$$-2 < x < 1 \text{ or } x > 3$$

D.
$$x < -3$$
 or $-1 < x < 2$

E.
$$-3 < x < -1 \text{ or } x > 2$$

2. The solutions of the equation |x| = |1 + 2x| are

A.
$$x = 1 \text{ and } x = \frac{1}{3}$$

B.
$$x = -1$$
 and $x = -\frac{1}{3}$

C.
$$x = -1$$
 and $x = \frac{2}{3}$

D.
$$x = -2 \text{ and } x = \frac{1}{3}$$

3. An equation of the line through (1,2) and perpendicular to the line 3x+2y=4 is

A.
$$-3x + 2y - 4 = 0$$

B.
$$3x + 6y - 8 = 0$$

C.
$$-2x + 3y = 4$$

D.
$$x - 3y = -5$$

4. The graph of the function f(x) = 1 + |x - 1| looks most like

٨

R

C

D

Ε.

5. The graph of the function $f(x) = \frac{1}{1+x^2}$ looks most like:

6. If $f(x) = \sqrt{9-x^2}$ and $g(x) = \sqrt{x-1}$, the domain of the product f(x)g(x) is

A.
$$1 \le x \le 3$$

B.
$$1 < x < 3$$

C.
$$-3 \le x \le -1$$

D.
$$-3 < x < 1$$

E.
$$-3 \le x \le 1$$

7. Solve the inequality $\sin x > \frac{1}{2}$ for x in $[0, \pi]$.

A.
$$\frac{\pi}{4} < x < \frac{3\pi}{4}$$

B.
$$\frac{\pi}{6} < x < \frac{\pi}{3}$$

$$C. \quad \frac{\pi}{2} < x$$

D.
$$\frac{\pi}{6} < x < \frac{5\pi}{6}$$

E.
$$\frac{\pi}{3} < x < \frac{2\pi}{3}$$

8. Simplify $\frac{3^{\sqrt{2}}9^{\sqrt{2}}}{3^{3\sqrt{2}-1}}$.

- A. 3
- B. $\frac{1}{3}$
- C. $3^{\sqrt{2}}$
- D. 2
- E. None of the above

- 9. If the position of a particle at time t is given by $f(t) = 16t^2$, its velocity at time t = 1 is
 - A. 16
 - B. -16
 - C. 32
 - D. -32
 - E. 64

10. $\lim_{x \to -3} \frac{x^2 - 9}{x^2 + 3x} =$

- A. 0
- B. 1
- C. 2
- D. 3
- E. -3

- 11. Let $f(x) = \frac{3x-3}{x-1}$ and $g(x) = \frac{x^3-1}{x^2+2x+1}$. Which of the following statements is
 - A. Neither f nor g is continuous at x = 1
 - B. Only f is continuous at x = 1
 - C. Only g is continuous at x = 1
 - D. Both f and g are continuous at x = 1
 - E. Not enough information

12. $\lim_{x \to 0} x^2 \cos \frac{2}{x} =$

- A. 0
- B. 1
- C. 2
- D. $\frac{1}{4}$
- E. limit does not exist

13.
$$\lim_{x \to 2^{-}} \left(\frac{1}{x-2} - \frac{2}{x^2 - 4} \right) =$$

- A. 0
- B. 1
- C. ∞
- D. $-\infty$
- E. -1

14. Let
$$f(x) = \frac{2}{x}$$
 then $f'(1)$ is

- A. -2
- B. -1
- C. 0
- D. 2
- E. Does not exist