MA161	EXAM 2		October 15, 1997
Name:		_	
ID #:			
Recitation Instructor	Tir	ne of Recitation	
Section #:		_	

<u>Instructions</u>:

- 1. Fill in your name, student ID number and division and section number on the mark–sense sheet. Also fill out the information requested above.
- 2. This booklet consists of 6 pages. There are 14 questions, each worth 7 points.
- 3. Mark your answers on the mark–sense sheet. Please show your working in this booklet.
- 4. No books, notes or calculator may be used.
- 5. When you are finished with the exam hand this booklet and the mark–sense sheet, in person, to your instructor.

MA161

1. If
$$f(x) = x^3 \ln x$$
, $f'(x) =$
B. $3x^2 \ln x + x^2$
C. $x^2 \ln x + 3x^2$
D. $\frac{3}{x^2}$
E. $3x^2 + \frac{1}{x}$

2. If
$$f(t) = \frac{2+t}{3-t}$$
, $f'(t) =$
A. $\frac{5}{(3-t)^2}$
B. $\frac{1-2t}{(3-t)^2}$
C. $\frac{5+2t}{3-t}$
D. $\frac{-1}{(3-t)}$
E. $\frac{5+2t}{(3-t)^2}$

3. If
$$f(x) = \ln(\cos(2x)), f'(x) =$$

A.
$$\tan(2x)$$

B. $-2\tan(2x)$
C. $2\tan(2x)$
D. $\frac{-\sin 2x}{2x}$
E. $\frac{1}{\cos(2x)}$

MA161

- 4. Given that f'(8) = a and f'(2) = b, evaluate $\frac{d}{dx}(f(x^3))$ at x = 2. A. 12a B. 3b C. abD. 12b E. 3a
- 5. If $g(x) = \sin(x^4)$ then g''(x) =

- A. $4x^3 \cos x^4 + \cos(x^4)$ B. $12x^2 \cos(x^4) - 16x^6 \sin(x^4)$ C. $4x^2 \sin(x^4) + \cos(x^4)$ D. $\sin(4x^3) + x^4 \cos(x^4)$
- E. None of the above
- 6. An object is moving along the x-axis. At time t its position is given by

$$h(t) = -1/t^2 + 3t + 8.$$

Its acceleration at time t is

A.
$$-\frac{3}{t^4}$$

B. $-1/t^3$
C. 3
D. $-6/t^4$
E. $-\frac{2}{t^3}$

EXAM #2

Fall 1997

7. If
$$x^2 + y^2 x + 3y^2 = 5$$
, then $\frac{dy}{dx} =$
A. $\frac{-y^2 - 2x}{2xy + 6y}$
B. $\frac{-2x}{2x + 6}$
C. $\frac{y^2 + 2x}{2xy + 6y}$
D. $\frac{5 - x^2}{3 + x}$
E. $\frac{-2x + y^2}{2xy + 6y}$

MA161

- 8. The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. At what rate is the area of the triangle increasing when the length of the sides is 8 cm?
 - A. 1/4 cm²/sec

 B. $2\sqrt{3}$ cm²/sec

 C. $8\sqrt{3}$ cm²/sec

 D. 16 cm²/sec

 E. 5 cm²/sec
- 9. Gas is being pumped into a spherical balloon at the rate of 8 ft^3/min . How fast is the radius of the balloon increasing when the radius of the balloon is 2 ft?

A.
$$\frac{1}{2\pi}$$
 ft/min
B. $\frac{8}{\pi}$ ft/min
C. $-\frac{1}{2\pi}$ ft/min
D. $\frac{\pi}{8}$ ft/min
E. $4\pi^2$ ft/min

EXAM #2

MA161

10. Given that $(27)^{1/3} = 3$, use linear approximation to approximate $(25)^{1/3}$.

A.
$$3 - \frac{1}{27}$$

B. $3 - \frac{5}{27}$
C. $3 - \frac{2}{27}$
D. $3 - \frac{6}{27}$
E. $3 - \frac{4}{27}$

- 11. The critical numbers of the function xe^{3x} are A. 0 B. there are none C. 3 D. -1/3E. -3
- 12. Let $f(x) = 2x^3 3x$, $g(x) = 3x + 2\sin x$. Which one of the following statements is true?
 - A. Both f and g are increasing on $(-\infty, \infty)$.
 - B. f is increasing and g is decreasing on $(-\infty, \infty)$.
 - C. g is increasing on $(-\infty, \infty)$, f is not.
 - D. f is decreasing and g is increasing on $(-\infty, \infty)$.
 - E. Both f and g are decreasing on $(-\infty, \infty)$.

MA161

13. The lengths of the two perpendicular sides of a right triangle add up to 12 ft. What is the maximal area of the triangle?

А.	$12 \ {\rm ft}^2$
В.	$18 \ {\rm ft}^2$
С.	$72 \ {\rm ft}^2$
D.	$81~{\rm ft}^2$
Е.	$144 \ {\rm ft}^2$

14. All antiderivatives of $1 + \cos x$ are

A. $\cos x + c$ B. $-\sin x + c$ C. $x + \sin x + c$ D. $x + x \cos x + c$ E. $x - \sin x + c$

 $\mathbf{6}$