MA161	FINAL EXAM		December 15, 1997
Name:		-	
ID #:			
Recitation Instructor	Tin	ne of Recitation _	
Section #:		_	

<u>Instructions</u>:

- 1. Fill in your name, student ID number and division and section numbers on the mark–sense sheet. Also fill in the information requested above.
- 2. This booklet consists of 14 pages. There are 25 questions, each worth 8 points.
- 3. Mark your answers on the mark–sense sheet. Please show your working in this booklet.
- 4. No books, notes or calculators please.
- 5. When you are finished with the exam, hand this booklet and the mark–sense sheet, in person, to your instructor.
- 6. Have a nice holiday.

- 1. If |2 8x| > 1/2 then
 - A. 3/16 < x < 5/16
 - B. x < 3/16 or x > 5/16
 - C. 0 < x < 5/16
 - D. $5/16 < x < \infty$
 - E. None of the above

2. $\lim_{x \to \pi/3} \ln(\ln(2\sin x)) =$ A. $\ln(\ln 3) - \ln 2$ B. $2\ln 3 - \ln 2$ C. $\ln 2 + 2\ln 3$ D. $\ln(\ln 2) - \frac{1}{3}\ln 2$

E. $\ln(\ln 2) - \ln 3$

- 3. Consider the tangent to the curve $y = x^3$ at (2,8). What is the equation of the line that is perpendicular to this tangent and passes through the point (1,5)?
 - A. y 12x + 7 = 0
 - B. 2y 5x + 2 = 0
 - C. y + x 61 = 0
 - D. 12y + x 61 = 0
 - E. None of the above

- 4. The function $f(x) = \begin{cases} x^2 + 1 & 0 \le x \le 3\\ 10x/3 & 3 < x < \infty \end{cases}$ is
 - A. continuous for all $x \ge 0$
 - B. continuous for all $x \ge 0$ except at x = 3
 - C. continuous only for $0 \le x \le 3$
 - D. continuous only for $3 < x < \infty$
 - E. None of the above is true

5. $\lim_{x \to -2} \frac{x^2 - 4}{|x| - 2}$ A. Does not exist B. is -4 C. is 4 D. is 0 E. is ∞

6. If
$$y = \frac{\sinh x}{x^2 + 1}$$
 then $\frac{dy}{dx}$ is
A. $\frac{\cosh x}{2x}$
B. $\frac{x^3 \cosh x - x^2 \sinh x}{(x^2 + 1)^2}$
C. $\frac{(x^2 + 1) \cosh x - 2x \sinh x}{(x^2 + 1)^2}$
D. $\frac{\cosh x - x \sinh x}{(x^2 + 1)^2}$

E. None of the above

FINAL EXAM

- 7. Suppose $1 2x^2 \le g(x) \le -8x + 9$ for $0 \le x \le 4$. Then $\lim_{x \to 2} g(x) =$
 - A. 2
 - B. -7
 - C. -8
 - D. -16
 - E. There is not enough information to determine the limit.

- 8. A missile is launched vertically. After t seconds its altitude is $36t \ln(1+t)$ meters above ground. What is its acceleration after 5 seconds?
 - A. 7m/s^2
 - B. $9m/s^2$
 - C. $5m/s^2$
 - D. 20m/s^2
 - E. $25m/s^2$

FINAL EXAM

9. The slope of the tangent line to the curve $x^3 + y^3 + 2y = 4$ at the point (1, 1) is

A. 1

- B. -2/5
- C. -3/5
- D. 3/2
- E. 2

10. Two sides of an isosceles triangle are 3 inches long, and the angle between them is increasing at the rate 1 rad/min. At the moment when the third side is also 3 inches long, at what rate is this side increasing?

A.
$$\frac{3\sqrt{3}}{2}$$
 in/min
B. 1 in/min
C. $\frac{\sqrt{3}}{2}$ in/min
D. $\frac{1}{2}$ in/min
E. $\frac{\sqrt{3}}{3}$ in/min

- 11. The sum of two positive angles, α and β is $\pi/2$. What is the maximum value of $\sin \alpha + \sin \beta$?
 - A. 1
 - B. 3/2
 - C. $\sqrt{2}$
 - D. $\frac{\sqrt{2}}{2}$
 - E. There is no maximum

- 12. A function h is continuous and differentiable on $(-\infty, \infty)$. We know h(0) = 0 and h(1) = 2. Which of the following must be true?
 - I. On the interval [0,1] h has a maximum.
 - II. There is an $x, 0 \le x \le 1$, such that h'(x) = 0.
 - III. There is an $x, 0 \le x \le 1$, such that h'(x) = 2.
 - A. Only I
 - B. Only I and II
 - C. Only I and III
 - D. Only II and III
 - E. All three

FINAL EXAM

- 13. The relative extrema of the function $\ln(e^x + e^{-x})$ are as follows.
 - A. Relative minimum at 0, relative maxima at 1/e and -1/e.
 - B. Relative minimum at 1/e and -1/e, relative maximum at 0.
 - C. There is no relative minimum, there is relative maximum at 0.
 - D. Relative minimum at 0, but there is no relative maximum.
 - E. There are no relative extrema.

14.
$$\lim_{x \to \infty} \frac{x - 1/x + \sin 1/x}{2x + \sqrt{1 + x}} =$$

A. $-1/2$
B. 0
C. $1/3$
D. $1/2$
E. ∞

. This could be the graph of the function

A.
$$e^{-2x} - e^{-3x}$$
, $x > 0$
B. $1/(1+x)$, $x > 0$
C. $x/(1+x)$, $x > 0$
D. $1/\ln x$, $x > 0$

E.
$$xe^x, x > 0$$

16.
$$\int_{-1}^{2} |x^3| dx =$$

A. 17/4
B. 15/4
C. 1/2
D. 13/4
E. 11/4

FINAL EXAM

17. If $\int_{-2}^{2} f(x)dx = 0$, which of the following statements must be true? I. f(x) = 0 for all x in [-2, 2]II. $|f(x)| \ge 1$ for some x in [-2, 2]III. $\int_{0}^{-2} f(x)dx = \int_{0}^{2} f(x)dx$ A. All three B. Only I and III C. Only I and III D. Only III

E. None

- 18. The area enclosed by the curve $x = y^2$ and the line y = x 2 is
 - A. 7/2
 - B. 9/2
 - C. 11/2
 - D. 13/2
 - E. 15/2

19.
$$\frac{d}{dx} \int_{2}^{e^{x}} \frac{dt}{\ln t} =$$
A. xe^{x}
B. xe^{-x}
C. e^{-x}/x
D. e^{x}/x
E. $1/x$

20.
$$\frac{d}{dx}(2x)^{x} =$$
A. $x(2x)^{x-1}$
B. $(2x)^{x} \ln 2$
C. $(2x)^{x} / \ln 2$
D. $(2x)^{x} \ln(2x)$
E. $(2x)^{x}(1 + \ln(2x))$

11

21.
$$\int_{0}^{2} 4^{x} dx =$$

A. $8/\ln 2$
B. $8\ln 2$
C. $\frac{15}{2\ln 2}$
D. 60
E. 15

22.
$$\int \frac{2x}{\sqrt{1-x^4}} \, dx =$$

A. $\sin^{-1}(x^2) + C$
B. $\tan^{-1}(x^2) + C$
C. $\ln \sqrt{1-x^4} + C$
D. $\sqrt{1-x^4} + C$
E. $\frac{\sqrt{1-x^4}}{x^2} + C$

- 23. If $f(x) = x^5 + 4x$ then $(f^{-1})'(5)$ is
 - A. 1
 - B. 1/4
 - C. 1/5
 - D. 1/9
 - E. 1/20

24.
$$\int_{0}^{1/3} \frac{dx}{1+9x^{2}} =$$

A. $\pi/18$
B. $\pi/12$
C. $\pi/6$
D. $\pi/3$
E. $\pi/2$

25.
$$\tan(\sin^{-1} x) =$$

A.
$$\frac{x}{1+x^2}$$

B.
$$\frac{1}{1+x^2}$$

C.
$$x\sqrt{1-x^2}$$

D.
$$\frac{1}{\sqrt{1-x^2}}$$

E.
$$\frac{x}{\sqrt{1-x^2}}$$