MATH 161 – 161E – SPRING 1998 – SECOND EXAM – March 19, 1998

STUDENT NAME: _____

STUDENT ID: _____

RECITATION INSTRUCTOR: _____

INSTRUCTIONS:

1. This test booklet has 6 pages including this one.

2. Fill in your name, your student ID number, and your recitation instructor's name above.

3. Use a number 2 pencil on the mark-sense sheet (answer sheet).

4. On the mark-sense sheet, fill in the recitation instructor's name and the course number.

5. Fill in your name and student ID number, blacken the appropriate spaces, and sign the mark-sense sheet.

6. Mark the division and section number of your class and blacken the corresponding circles, including the circles for the zeros. If you do not know your division and section number ask your instructor.

7. There are 15 questions, each worth 7 points. Blacken your choice of the correct answer in the spaces provided for questions 1-15. Turn in BOTH the answer sheet and the question sheets to your instructor when you are finished.

8. No books, notes or calculators may be used.

1) Given
$$f(x) = \frac{x}{x^2 - 1}$$
, $f''(x)$ is
a) $-\frac{1 + x^2}{(x^2 - 1)^4}$
b) $\frac{2x(x^2 + 3)}{(x^2 - 1)^3}$
c) $\frac{1 + x^2}{(x^2 - 1)^4}$
d) $\frac{2x(x^2 + 3)}{(x^2 - 1)^2}$
e) $\frac{3x - 2}{(x^2 - 1)^4}$

MATH 161 – 161E – SPRING 1998 – SECOND EXAM – March 19, 1998 2) Given that y is a function of x and that $x^2 + \frac{x}{y} = -2$, then y'(x) at the point $(1, -\frac{1}{3})$ is a) $\frac{4}{9}$ b) -9 c) 12 d) $\frac{-1}{9}$ e) Impossible to determine

3) A beacon on a lighthouse 1 mile from shore revolves at the rate of 8 radians/min. Assuming that the shoreline is straight, calculate the speed at which the spotlight is sweeping across the shoreline as it lights up the sand 3 miles from the lighthouse.

- a) 24 miles/min
- b) 10 miles/min
- c) 50π miles/min
- d) 72 miles/min

e) $\frac{32}{5}\pi$ miles/min

4) Using linear approximation at x = 16, we find that $(17)^{1/4}$ is approximately equal to

- a) $\frac{63}{32}$
- b) $\frac{64}{32}$
- 52 66
- c) $\frac{66}{32}$
- d) $\frac{65}{32}$
- 32
- e) $\frac{67}{32}$

MATH 161 - 161E - SPRING 1998 - SECOND EXAM - March 19, 1998

5) A radio tower is 130 ft. tall and has been assembled on the ground lying on its side. A motorized device raises its top at a constant rate of 10 ft/min, keeping the base of the tower fixed with respect to the ground. At what rate is the distance from the top of the tower to the vertical position changing when the top of the tower is 120 ft from the ground?

- a) 24 ft/min
- b) 50 ft/min
- c) -10 ft/min
- d) -50 ft/min
- e) -24 ft/min

6) A ferris wheel is 100 ft in radius and revolves at a rate of 1.5 radians/min. How fast is a passenger rising when she is 60 ft higher than the center of the ferris wheel and rising ?

- a) 40 ft/min
- b) 90 ft/min
- c) 120 ft/min
- d) 30π ft/min
- e) 200 ft/min

7) There are two critical numbers of $f(x) = (x^2 + 2x)e^{-x}$. Their product is

- a) -2
- b) -1
- c) 0
- d) 1
- e) 2

MATH 161 – 161E – SPRING 1998 – SECOND EXAM – March 19, 1998

8) If we use the Newton-Raphson method to find an approximate solution to $x^3 - 2x - 5 = 0$ and we start with $c_1 = 2$, then c_2 is equal to

- a) $\frac{17}{10}$
- b) $\frac{19}{10}$
- c) $\frac{10}{10}$
- d) $\frac{23}{10}$ e) $\frac{25}{10}$

9) The maximum value of the function

 $f(x) = 2x^3 - 3x^2 - 12x + 10$ in [1,3] is

- a) -10
- b) -1
- c) 1
- d) 12
- e) 17

10) The minimum length of a fence built to enclose a rectangular region of 1250 square miles with one side using a river as a natural boundary which does not need to be fenced is

- a) 75 miles
- b) 100 miles
- c) 125 miles
- d) 150 miles
- e) 175 miles

MATH 161 - 161E - SPRING 1998 - SECOND EXAM - March 19, 1998

11) Find all numbers c in (0, 1) for which the line tangent to the graph of $f(x) = x^3 - ax + b$ at (c, f(c)) is parallel to the line segment joining (0, f(0)) and (1, f(1))

- a) $c = \frac{1}{\sqrt{3}}$ b) $c = \frac{1}{2}$ c) $c = \frac{1}{\sqrt{2}}$ d) $c = \frac{1}{3}$
- e) c depends of the constants a and b

12) Let F(x) satisfy F'(x) = cos(2x) and F(0) = 1. Then F(π/4) is equal to
a) 1/2
b) 3/2
c) 1
d) 2
e) 2/3
13) The function f(x) = 3x⁵ - 5x³ + 100 is

- a) is increasing in $(-\infty,-1)\cup(1,\infty)$ and decreasing in (-1,1)
- b) increasing in $(-\infty, -1)$, and decreasing in $(-1, \infty)$
- c) increasing in $(-\infty, 0)$, and decreasing in $(0, \infty)$
- d) increasing in $(-\infty, 2)$, and decreasing in $(2, \infty)$
- e) always increasing.

14) Suppose you have a cache of a radioactive material whose half life is 2000 years. The length of time that it would take for one fifth of the material to disappear is

- a) 400 years
- b) $2000 \frac{\ln(5) \ln(2)}{\ln(2)}$ years
- c) 800 years
- d) $1000 \frac{\ln(5) \ln(4)}{\ln(2)}$ years e) $2000 \frac{\ln(5) - \ln(4)}{\ln(2)}$ years

15) The relative extreme values of f(x) = x⁴ - 2x³ + x² are
a) Three minima at x = ¹/₂, x = 1 and x = 0,
b) Three maxima at x = ¹/₂, x = 1 and x = 0,
c) One maximum at x = 1, two minima at x = ¹/₂ and x = 0,
d) One maximum at x = 0, two minima at x = ¹/₂ and x = 1,
e) One maximum at x = ¹/₂, two minima at x = 0 and x = 1,