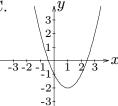
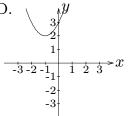
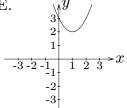
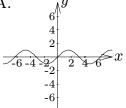
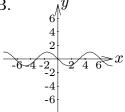

Name:	I.D.#:
Section #:	TA's Name:

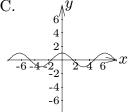

- 1. This package contains 7 pages and 12 problems, problems 1–8 are worth 8 points each and problems 9–12 are worth 9 points each. Correct answers with inconsistent work or no work may not be given credit.
- 2. Be sure to fill in your name, ID#, Section #, and the name of your recitation instructor.
- 3. The exam lasts 60 minutes.
- 4. No books, notes, or calculators, please.

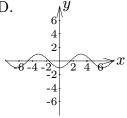

- 1. The domain of the function $f(x) = \frac{\ln |x|}{\sqrt{x+1}}$ is
- A. x > 0
- B. x > -1
- C. x > 1
- D. $x > -1, x \neq 0$
- E. $x \neq 0$


2. The graph of $x^2 - 2x - y = 1$ looks most like









3. The graph of $y = \cos(\pi - x)$ looks most like

E. None of A, B, C or D.

4.
$$\log_8 2^{-5} =$$

A.
$$-40$$

C.
$$\frac{3}{5}$$

D.
$$-\frac{5}{3}$$

E.
$$-15$$

 $5. \quad \lim_{x \to 0} \frac{\tan(2x)\sin x}{x} =$

- A. does not exist
- B. 1
- C. 0
- D. 2
- E. $\frac{1}{2}$

- 6. The graphs of $f(x) = 3e^{2x}$ and $g(x) = e^x$ meet when x =
- A. $-\frac{1}{2} \ln 3$
- B. ln 2
- C. $-\ln 3$
- D. $\ln 3$
- E. $-\ln(\frac{1}{3})$

7. Let $f(x) = x^{2/3}$ then f'(0)

- A. 0
- B. $\frac{2}{3}x^{-1/3}$
- C. $\frac{2}{3}$
- D. $\frac{1}{3}$
- E. does not exist

8. Let $f(x) = \sin x + \cos x$ then $f'(\frac{\pi}{4}) =$

- A. 0
- B. $2\sqrt{2}$
- C. 1
- D. $\frac{1}{2} + \frac{\sqrt{3}}{2}$
- E. $\sqrt{3}$

9. Solve the inequality $\frac{x+1}{(x-1)(2-x)} > 0$.

10. Find an equation of the line that is perpendicular to the line 4x - 2y + 3 = 0 and passes through the point (3,4). Write your answer in the form ax + by + c = 0 where a, b and c are constants.

11. Let $f(x) = \frac{2}{x}$. Use the definition of derivative, $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$, to find f'(2).

$$f'(2) =$$

12. Find all values of x at which the vertical asymptotes of the graph of

$$f(x) = \frac{(x+2)\ln|x|}{x^2 - 4}$$
 occur.

Vertical asymptotes occur at x =