Name: \qquad I.D.\#: \qquad

Section \#: \qquad TA's Name: \qquad

1. This package contains 7 pages and 12 problems, problems $1-8$ are worth 8 points each and problems $9-12$ are worth 9 points each. Correct answers with inconsistent work or no work may not be given credit.
2. Be sure to fill in your name, ID\#, Section \#, and the name of your recitation instructor.
3. The exam lasts 60 minutes.
4. No books, notes, or calculators, please.
5. The domain of the function $f(x)=\frac{\ln |x|}{\sqrt{x+1}}$ is
A. $x>0$
B. $x>-1$
C. $x>1$
D. $x>-1, x \neq 0$
E. $x \neq 0$
6. The graph of $x^{2}-2 x-y=1$ looks most like
A.

C.

D.

E.

7. The graph of $y=\cos (\pi-x)$ looks most like
A.

B.

D.

E. None of A, B, C or D.
8. $\log _{8} 2^{-5}=$
A. -40
B. -5
C. $\frac{3}{5}$
D. $-\frac{5}{3}$
E. -15
9. $\lim _{x \rightarrow 0} \frac{\tan (2 x) \sin x}{x}=$
A. does not exist
B. 1
C. 0
D. 2
E. $\frac{1}{2}$
10. The graphs of $f(x)=3 e^{2 x}$ and $g(x)=e^{x}$ meet when $x=$
A. $-\frac{1}{2} \ln 3$
B. $\ln 2$
C. $-\ln 3$
D. $\ln 3$
E. $-\ln \left(\frac{1}{3}\right)$
11. Let $f(x)=x^{2 / 3}$ then $f^{\prime}(0)$
A. 0
B. $\frac{2}{3} x^{-1 / 3}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$
E. does not exist
12. Let $f(x)=\sin x+\cos x$ then $f^{\prime}\left(\frac{\pi}{4}\right)=$
A. 0
B. $2 \sqrt{2}$
C. 1
D. $\frac{1}{2}+\frac{\sqrt{3}}{2}$
E. $\sqrt{3}$
13. Solve the inequality $\frac{x+1}{(x-1)(2-x)}>0$.
14. Find an equation of the line that is perpendicular to the line $4 x-2 y+3=0$ and passes through the point $(3,4)$. Write your answer in the form $a x+b y+c=0$ where a, b and c are constants.
15. Let $f(x)=\frac{2}{x}$. Use the definition of derivative, $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$, to find $f^{\prime}(2)$.

$$
f^{\prime}(2)=
$$

12. Find all values of x at which the vertical asymptotes of the graph of $f(x)=\frac{(x+2) \ln |x|}{x^{2}-4}$ occur.
