MA 161-161E	EXAM 2	SPRING 1999
Name:	I.D.#:	
Section #:	TA's Name:	

- 1. This package contains 7 pages and 12 problems, problems 1–8 are worth 8 points each and problems 9–12 are worth 9 points each. Correct answers with inconsistent work or no work may not be given credit.
- 2. Be sure to fill in your name, ID#, Section #, and the name of your recitation instructor.
- 3. The exam lasts 60 minutes.
- 4. No books, notes, or calculators, please.

1. Let
$$f(x) = \frac{\sin x}{x^2 - 1}$$
. Then $f'(2) =$

A.
$$\frac{3\cos 2 - 4\sin 2}{3}$$

B.
$$\frac{3\cos 2 + 4\sin 2}{3}$$

C.
$$\frac{3\cos 2 - 4\sin 2}{9}$$

D.
$$\frac{3\cos 2 + 4\sin 2}{9}$$

E.
$$\frac{\cos 2}{4}$$

2. Let $f(t) = \ln(\sin(e^t))$. If $t = \ln(\pi/4)$, then f'(t) =

A.
$$\frac{\pi}{4}$$

B. 1
C. $\frac{\pi}{2\sqrt{2}}$
D. 0
E. $\frac{\sqrt{2}}{2}$

3. Let
$$x^2 + 3xy + 2y^2 = 0$$
; then at the point $(-1, 1), \frac{dy}{dx} =$

A. 2
B.
$$-1$$

C. $-\frac{1}{4}$
D. $\frac{1}{4}$
E. 1

4. A certain population grows exponentially and doubles in 3 days. If the initial population is 100, how long does it take for the population to reach 1200?

А.	$\frac{1}{3} \frac{\ln 2}{\ln 12}$
В.	$\frac{1}{3} \frac{\ln 12}{\ln 2}$
С.	10.5
D.	$3\frac{\ln 12}{\ln 2}$
E.	$3\frac{\ln 2}{\ln 12}$

MA 161-161E

5. The following is a graph of f'(x) for $-2 \le x \le 2$.

Which of the following could be a graph of f?

E. There is not enough information to determine a possible graph of f.

6. Let $f(x) = x^3 + x^2 - x + 2$. Find all x for which f is decreasing.

A.
$$x > -1$$

B. $x < \frac{1}{3}$
C. $x < -1$ or $x > \frac{1}{3}$
D. $-1 < x < \frac{1}{3}$
E. $x > \frac{1}{3}$

7. By using a linear approximation, near x = 27, the value of $(26)^{2/3}$ is approximately given by

A.
$$9 + \frac{1}{3}$$

B. $9 - \frac{1}{3}$
C. $9 - \frac{1}{9}$
D. $9 + \frac{2}{9}$
E. $9 - \frac{2}{9}$

8. A spherical balloon is losing air at the rate of 4 cubic inches per minute. What is the rate of change of the radius of balloon when the radius is 10 inches?

A.
$$-\frac{1}{100\pi} \text{ in/min}$$

B.
$$\frac{1}{100\pi} \text{ in/min}$$

C.
$$-\frac{3}{100\pi} \text{ in/min}$$

D.
$$\frac{3}{100\pi} \text{ in/min}$$

E.
$$-\frac{\pi}{100} \text{ in/min}$$

9. Let
$$f(x) = (e^x + x^3) \cos^2 x$$
. Find $f'(x)$.

$$f'(x) =$$

10. Find all relative extrema of $f(x) = x^3 - 24 \ln x$. Justify your answer with the first or second derivative test.

rel. max. occur at x =

rel. min. occur at x =

MA 161-161E

11. A land owner wishes to use 1000 ft of fencing to enclose a rectangular region. Suppose one side of the property lies along a stream and thus needs no fencing. What should the lengths of the sides be in order to maximize the area? Draw a sketch for this problem. Be sure to show that this is a maximum.

length	:	
width	:	

12. Find f(x) if $f'(x) = x^2 + x - 2$ and f(1) = 1.

$$f(x) =$$