Name: \qquad I.D.\#: \qquad

Section \#: \qquad TA's Name: \qquad

1. This package contains 7 pages and 12 problems, problems $1-8$ are worth 8 points each and problems $9-12$ are worth 9 points each. Correct answers with inconsistent work or no work may not be given credit.
2. Be sure to fill in your name, ID\#, Section \#, and the name of your recitation instructor.
3. The exam lasts 60 minutes.
4. No books, notes, or calculators, please.
5. Let $f(x)=\frac{\sin x}{x^{2}-1}$. Then $f^{\prime}(2)=$
A. $\frac{3 \cos 2-4 \sin 2}{3}$
B. $\frac{3 \cos 2+4 \sin 2}{3}$
C. $\frac{3 \cos 2-4 \sin 2}{9}$
D. $\frac{3 \cos 2+4 \sin 2}{9}$
E. $\frac{\cos 2}{4}$
6. Let $f(t)=\ln \left(\sin \left(e^{t}\right)\right)$. If $t=\ln (\pi / 4)$, then $f^{\prime}(t)=$
A. $\frac{\pi}{4}$
B. 1
C. $\frac{\pi}{2 \sqrt{2}}$
D. 0
E. $\frac{\sqrt{2}}{2}$
7. Let $x^{2}+3 x y+2 y^{2}=0$; then at the point $(-1,1), \frac{d y}{d x}=$
A. 2
B. -1
C. $-\frac{1}{4}$
D. $\frac{1}{4}$
E. 1
8. A certain population grows exponentially and doubles in 3 days. If the initial population is 100 , how long does it take for the population to reach 1200 ?
A. $\frac{1}{3} \frac{\ln 2}{\ln 12}$
B. $\frac{1}{3} \frac{\ln 12}{\ln 2}$
C. 10.5
D. $3 \frac{\ln 12}{\ln 2}$
E. $3 \frac{\ln 2}{\ln 12}$
9. The following is a graph of $f^{\prime}(x)$ for $-2 \leq x \leq 2$.

Which of the following could be a graph of f ?

D.

E. There is not enough information to determine a possible graph of f.
6. Let $f(x)=x^{3}+x^{2}-x+2$. Find all x for which f is decreasing.
A. $x>-1$
B. $\quad x<\frac{1}{3}$
C. $\quad x<-1$ or $x>\frac{1}{3}$
D. $-1<x<\frac{1}{3}$
E. $\quad x>\frac{1}{3}$
7. By using a linear approximation, near $x=27$, the value of $(26)^{2 / 3}$ is approximately given by
A. $9+\frac{1}{3}$
B. $9-\frac{1}{3}$
C. $9-\frac{1}{9}$
D. $9+\frac{2}{9}$
E. $\quad 9-\frac{2}{9}$
8. A spherical balloon is losing air at the rate of 4 cubic inches per minute. What is the rate of change of the radius of balloon when the radius is 10 inches?
A. $-\frac{1}{100 \pi} \mathrm{in} / \mathrm{min}$
B. $\frac{1}{100 \pi} \mathrm{in} / \mathrm{min}$
C. $-\frac{3}{100 \pi} \mathrm{in} / \mathrm{min}$
D. $\frac{3}{100 \pi} \mathrm{in} / \mathrm{min}$
E. $\quad-\frac{\pi}{100} \mathrm{in} / \mathrm{min}$
9. Let $f(x)=\left(e^{x}+x^{3}\right) \cos ^{2} x$. Find $f^{\prime}(x)$.

$$
f^{\prime}(x)=
$$

10. Find all relative extrema of $f(x)=x^{3}-24 \ln x$. Justify your answer with the first or second derivative test.
rel. max. occur at $x=$
rel. min. occur at $x=$
11. A land owner wishes to use 1000 ft of fencing to enclose a rectangular region. Suppose one side of the property lies along a stream and thus needs no fencing. What should the lengths of the sides be in order to maximize the area? Draw a sketch for this problem. Be sure to show that this is a maximum.
length:
width:
12. Find $f(x)$ if $f^{\prime}(x)=x^{2}+x-2$ and $f(1)=1$.

$$
f(x)=
$$

