MA 161-161E	EXAM 3	SPRING 1999
Name:	I.D.#:	
Section #:	TA's Name:	_

- 1. This package contains 8 pages and 12 problems, problems 1–10 are worth 8 points each, problem 11 is worth 9 points and problem 12 is worth 11 points. Correct answers with inconsistent work or no work may not be given credit.
- 2. Be sure to fill in your name, ID#, Section #, and the name of your recitation instructor.
- 3. The exam lasts 60 minutes.
- 4. No books, notes, or calculators, please.

EXAM 3

1. The shortest distance of a point on the graph of $y = \sqrt{x}$ to the point (4,0) is equal to

A.
$$2\sqrt{2}$$

B. $\frac{\sqrt{15}}{2}$
C. 2
D. 3
E. $\frac{5}{2}$

2. $\lim_{x \to -\infty} \frac{6x + 4x^2 + 5x^3}{7x^3 - 3x^2 - 14} =$

A.
$$\frac{6}{7}$$

B. $\frac{4}{7}$
C. $\frac{5}{7}$
D. $-\frac{5}{7}$

E. Does not exist

EXAM 3

- 3. All the inflection points of the graph of $f(x) = x^4 6x^2$ occur at
 - A. x = 0, 3B. x = 1C. x = -1D. x = -1, 1E. none

4. Find the lower sum $L_f(P)$ for $\int_{1}^{4} \frac{1}{x} dx$ where $P = \{1, 3, 4\}$. A. $\frac{5}{12}$ B. $\frac{7}{12}$ C. $\frac{3}{4}$ D. $\frac{11}{12}$ E. $\ln 4$

5. Let
$$G(x) = \int_{x^3}^{1} \sin(t^2) dt$$
. Then $G'(1) =$

A. 3 sin 1 B. 1 C. -5 sin 1 D. -3 E. -3 sin 1

6. Find a and b such that $\begin{bmatrix} 3 \\ b \\ c \end{bmatrix}$

$$\int_{2} e^{x^2} dx - \int_{a} e^{x^2} dx = \int_{4} e^{x^2} dx$$

A. a = 2, b = 3B. a = 2, b = 4C. a = 3, b = 4D. a = 4, b = 3E. a = 4, b = 2 7. For what value of k can the following integral be evaluated directly using a substitution.

$$5\int e^{t^3}t^k dt$$

- A. k = 0B. k = 1C. k = 2D. k = 3E. k = 4
- 8. True-false: a statement is false unless true in all situations.
 - a. At a local maximum of a continuous function f we have f'(x) = 0.
 - b. If f'(x) > 0 on (a, b) the graph of f is concave up.
 - c. $\int \ln x dx = \frac{1}{x} + C$

d.
$$\int_{0}^{x} \sin t dt$$
 is increasing for $\frac{\pi}{2} < x < \pi$.

9. Compute the following integrals

a)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx =$$

b)
$$\int \frac{x^3}{1+x^4} dx =$$

EXAM 3

10. Give the area between the graph of $f(x) = \frac{\ln x}{x}$ and the x axis for $\frac{1}{2} \le x \le 2$ as a sum or difference of definite integrals of $\frac{\ln x}{x}$ (do not use absolute values). Do not integrate.

- 11. In the boxes indicate the substitutions to allow the integrals below to be integrated directly. Do not integrate. (9 points)
 - a) $\int x\sqrt{x+3} \, dx$

b)
$$\int (\ln x)^3 x^{-1} dx$$

c) $\int \tan^5 x \sec^2 x dx$

u =			

u =			

u =			

12. Sketch the graph of $f(x) = \ln(e^x + e^{-x})$. Find first and second derivatives and all relative extrema, intervals where graph is concave up and where concave down, and points of inflection. (11 points)

f'(x) =

rel. max. at :

concave up on :

points of inflection :

f''(x) =

rel. min. at :

concave down on :