Name: \qquad I.D.\#: \qquad

Section \#: \qquad TA's Name: \qquad

1. This package contains 8 pages and 12 problems, problems $1-10$ are worth 8 points each, problem 11 is worth 9 points and problem 12 is worth 11 points. Correct answers with inconsistent work or no work may not be given credit.
2. Be sure to fill in your name, ID\#, Section \#, and the name of your recitation instructor.
3. The exam lasts 60 minutes.
4. No books, notes, or calculators, please.
5. The shortest distance of a point on the graph of $y=\sqrt{x}$ to the point $(4,0)$ is equal to
A. $2 \sqrt{2}$
B. $\frac{\sqrt{15}}{2}$
C. 2
D. 3
E. $\frac{5}{2}$
6. $\lim _{x \rightarrow-\infty} \frac{6 x+4 x^{2}+5 x^{3}}{7 x^{3}-3 x^{2}-14}=$
A. $\frac{6}{7}$
B. $\frac{4}{7}$
C. $\frac{5}{7}$
D. $-\frac{5}{7}$
E. Does not exist
7. All the inflection points of the graph of $f(x)=x^{4}-6 x^{2}$ occur at
A. $x=0,3$
B. $x=1$
C. $x=-1$
D. $x=-1,1$
E. none
8. Find the lower sum $L_{f}(P)$ for $\int_{1}^{4} \frac{1}{x} d x$ where $P=\{1,3,4\}$.
A. $\frac{5}{12}$
B. $\frac{7}{12}$
C. $\frac{3}{4}$
D. $\frac{11}{12}$
E. $\ln 4$
9. Let $G(x)=\int_{x^{3}}^{1} \sin \left(t^{2}\right) d t$. Then $G^{\prime}(1)=$
A. $3 \sin 1$
B. 1
C. $-5 \sin 1$
D. -3
E. $-3 \sin 1$
10. Find a and b such that

$$
\int_{2}^{3} e^{x^{2}} d x-\int_{a}^{b} e^{x^{2}} d x=\int_{4}^{3} e^{x^{2}} d x \quad \begin{array}{ll}
\text { A. } a=2, b=3 \\
\text { B. } a=2, b=4 \\
\text { C. } a=3, b=4 \\
\text { D. } a=4, b=3 \\
\text { E. } a=4, b=2
\end{array}
$$

7. For what value of k can the following integral be evaluated directly using a substitution.

$$
5 \int e^{t^{3}} t^{k} d t
$$

A. $k=0$
B. $k=1$
C. $k=2$
D. $k=3$
E. $k=4$
8. True-false: a statement is false unless true in all situations.
a. At a local maximum of a continuous function f we have $f^{\prime}(x)=0$.
b. If $f^{\prime}(x)>0$ on (a, b) the graph of f is concave up.
c. $\int \ln x d x=\frac{1}{x}+C$
d. $\int_{0}^{x} \sin t d t$ is increasing for $\frac{\pi}{2}<x<\pi$.
9. Compute the following integrals
a) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=$
b) $\int \frac{x^{3}}{1+x^{4}} d x=$

10. Give the area between the graph of $f(x)=\frac{\ln x}{x}$ and the x axis for $\frac{1}{2} \leq x \leq 2$ as a sum or difference of definite integrals of $\frac{\ln x}{x}$ (do not use absolute values). Do not integrate.
11. In the boxes indicate the substitutions to allow the integrals below to be integrated directly. Do not integrate. (9 points)
a) $\int x \sqrt{x+3} d x$ \square
b) $\int(\ln x)^{3} x^{-1} d x$ \square
c) $\int \tan ^{5} x \sec ^{2} x d x$

$$
u=
$$

12. Sketch the graph of $f(x)=\ln \left(e^{x}+e^{-x}\right)$. Find first and second derivatives and all relative extrema, intervals where graph is concave up and where concave down, and points of inflection. (11 points)
$f^{\prime}(x)=$
rel. max. at :

$f^{\prime \prime}(x)=$

> rel. min. at :
concave down on :

```
points of inflection :
```

