FINAL EXAM

Name: _____

ID #:_____

Recitation Instructor _____ Time of Recitation _____

Section #: _____

Instructions:

- 1. Fill in your name, student ID number and division and section numbers on the mark–sense sheet. Also fill in the information requested above.
- 2. This booklet consists of 10 pages. There are 25 questions, each worth 8 points. Each question has exactly one correct answer.
- 3. Mark your answers on the mark–sense sheet. Please show your work in this booklet.
- 4. No books, notes or calculators please.
- 5. When you are finished with the exam, hand this booklet and the mark–sense sheet, in person, to your instructor.

1. $\tan(\sin^{-1}(x)) =$

A.
$$\frac{1}{\sqrt{1-x^2}}$$

B.
$$\frac{1}{\sqrt{1+x^2}}$$

C.
$$\frac{x}{\sqrt{1+x^2}}$$

D.
$$\frac{1}{1+x^2}$$

E.
$$\frac{x}{\sqrt{1-x^2}}$$

2. Let $f(x) = \frac{1}{x-2}$ and $g(x) = \frac{1}{x-1}$. Find the domain of $f \circ g$. A. $x \neq 1$ and $x \neq 2$ B. $x \neq 1$ and $x \neq \frac{3}{2}$ C. $x \neq 2$ and $x \neq \frac{3}{2}$ D. $x \neq 1$ and $x \neq 2$ and $x \neq \frac{3}{2}$ E. $x \neq \frac{3}{2}$

- 3. The graph of $y = x^2 + 4x + 2$ can be drawn by translating the graph of $y = x^2$ so that the vertex (lowest point) of the graph of $y = x^2$ is translated to the point
 - A. (2, 2)B. (-2, 2)C. (2, -2)D. (-2, -2)E. (-2, 0)

$\mathbf{MA} \ \mathbf{161} \mathbf{-} \mathbf{161E}$

FINAL EXAM

SPRING 1999

4. Suppose $\lim_{x\to 1} f(x) = 3$. Which of the following could be the graph of f?

- A. only 1
- B. only 1 and 2
- C. only 1 and 2 and 3
- D. 1 and 2 and 3 and 4
- E. only 3

5. Let
$$f(x) = \frac{x^2 - x - 6}{x + 2}$$
. What value of f at $x = -2$ makes f continuous at $x = -2$?
A. 3
B. 2
C. 0
D. -2
E. $\lim_{x \to -2} f(x)$

6. If
$$f(x) = \frac{x^2 - 3x}{2x + 1}$$
, then $f'(1) =$

A.
$$\frac{1}{9}$$

B. $-\frac{2}{3}$
C. $\frac{7}{9}$
D. $-\frac{7}{9}$
E. $\frac{1}{3}$

FINAL EXAM

SPRING 1999

- 7. The x-intercept of the line tangent to the graph of $y = 3x^2 4x$ at the point (1, -1) is
 - A. x = -2B. $x = \frac{3}{2}$ C. x = 0D. $x = \frac{1}{2}$ E. x = 2

8. If $f(x) = \sqrt{\sin(x^3 + 2x)}$, then f'(1) =

- A. $\frac{5\cos 3}{2\sqrt{\sin 3}}$
B. $\frac{\cos 3}{2\sqrt{\sin 3}}$
C. $\frac{5\sin 3}{2\sqrt{\cos 3}}$
D. $\frac{\sin 3}{2\sqrt{\cos 3}}$
E. $5\tan 3$
- 9. Let $y^2 + y = 4x^2 + 2\sin\left(\frac{\pi x}{6}\right) + 1$ define y implicitly as a function of x near (1,2). Then at x = 1, $\frac{dy}{dx} =$
 - A. $\frac{1}{5} \left(\frac{\pi}{6}\right)$ B. $\frac{1}{3} \left(8 + \frac{\sqrt{3}}{2}\right)$ C. $8 + \pi \frac{\sqrt{3}}{2}$ D. $\frac{1}{5} \left(8 + \frac{\pi\sqrt{3}}{6}\right)$ E. $\frac{1}{3} \left(8 + \frac{\pi}{6}\right)$

FINAL EXAM

- 10. A substance decays so that P'(t) = kP(t). One third of the substance is lost in 2 hours. How many hours (from the starting time) will it take until only half the substance remains?
 - A. $2 \frac{\ln\left(\frac{1}{2}\right)}{\ln\left(\frac{3}{2}\right)}$ hours B. $2 \frac{\ln 2}{\ln\left(\frac{3}{2}\right)}$ hours C. $2 \frac{\ln 2}{\ln 3}$ hours D. $\frac{\ln 2}{\ln\left(\frac{3}{2}\right)}$ hours
 - E. $\frac{\ln(2)}{\ln(3)}$ hours

11. The function $f(x) = \frac{1}{2}x^2 - \ln x$

- A. is increasing on $(0, \infty)$
- B. has a local minimum at x = 0
- C. has a local minimum at x = 1
- D. has a local minimum at $x = \pm 1$
- E. has an inflection point at x = 1

FINAL EXAM

SPRING 1999

- 12. Shown below is the graph of f'(x). Then the graph of f is concave down on the interval(s).
 - A. [-2.0] and [0, 2]B. [-2, -1] and [0, 1]C. [-2, -1]D. [-1, 0] and [1, 2]

[-2,0) and (0,2]

Е.

- 13. Let a box with no top have height h and a square base with each side of length x. If the box has volume V then the surface area of the box is
 - A. x^2h B. πx^2h C. $x^2 + \frac{4V}{x}$ D. $2x^2 + 4V$ E. $x^2 + 2xh$

14. The function
$$f(x) = \sin x - \frac{\sqrt{3}}{2}x$$

- A. has a local minimum at $x = \frac{\pi}{6}$
- B. is always decreasing for x > 0
- C. has a local minimum at $x = \frac{\pi}{3}$
- D. has a local maximum at $x = \frac{\pi}{3}$
- E. has a local maximum at $x = \frac{\pi}{6}$

FINAL EXAM

15. The graph shown below is most similar to that of the function

A.
$$y = \frac{1-x}{x^2(x-2)}$$

B. $y = \frac{x-1}{x^2(x-2)}$
C. $y = \frac{x-1}{x(x-2)}$
D. $y = \frac{x^2}{(x-1)(x-2)}$
E. $y = \frac{(1-x)^2}{x^2(x-2)}$

- 16. Let a rectangle be constructed in the first quadrant with one vertex at (0,0) and the opposite vertex at the point (x, e^{-x}) . Let A(x) be the area of this rectangle. Then the first derivative A'(x) is
 - A. $-e^{-x}$ B. $e^{-x}(1-x)$ C. $e^{x}(x-1)$ D. $1-e^{-x}$ E. xe^{-x}

17.
$$\int_{-1}^{1} \frac{d}{dx} \sqrt{1+x^3} \, dx =$$

A. $\sqrt{2}$ B. $\frac{3}{2\sqrt{2}}$ C. 0 D. $\frac{3}{\sqrt{2}}$ E. $2\sqrt{2}$

18.
$$\int_0^1 9(x^2+3)^8 x \, dx =$$

A. $\frac{1}{2} 4^9$ B. $4^9 - 3^9$ C. $\frac{1}{2} (4^9 - 3^9)$ D. 3^9 E. $4^8 - 3^8$

19. The area enclosed by the graphs of $y = x^2$ and x + y = 2 is equal to

A.
$$\int_{-1}^{2} (2 - x - x^{2}) dx$$

B.
$$\int_{-1}^{2} (x^{2} + x - 2) dx$$

C.
$$\int_{-2}^{1} (x^{2} + x - 2) dx$$

D.
$$\int_{-2}^{1} (2 - x - x^{2}) dx$$

E.
$$\int_{-2}^{1} (x^{2} + x + 2) dx$$

FINAL EXAM

SPRING 1999

20. If $f(x) = x^3 + 3x - 1$ then the derivative of its inverse at 3, $(f^{-1})'(3)$ is equal to

A. 6 B. -6C. $\frac{1}{6}$ D. $-\frac{1}{6}$ E. $\frac{1}{3}$

21.
$$\frac{d}{dx} (x)^{\sin x} =$$

A. $x^{\sin x} \cos x \ln x$ B. $x^{\sin x-1}$ C. $x^{\sin x} \frac{\sin x}{x}$ D. $x^{\sin x} \left\{ \cos x \ln x + \frac{\sin x}{x} \right\}$ E. $x^{\cos x} + x^{\sin x-1}$

22.
$$\int_0^1 5^x dx =$$

A.
$$\frac{4}{\ln 5}$$

B.
$$\frac{5}{\ln 5}$$

C. 5
D. 1
E. 4 ln 5

23.
$$\int_0^{\frac{1}{2}} \frac{1}{4x^2 + 1} \, dx =$$

- A. 1
- B. *π*
- C. $\frac{\pi}{2}$
- D. $\frac{\pi}{4}$
- E. $\frac{\pi}{8}$

24.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\sin^3 x} \, dx =$$

Α.	1
В.	$-\frac{1}{2}$
С.	0
D.	$\frac{1}{2}$
Е.	1

25. Let $f(x) = \sin^{-1}(x^2)$ then f'(x) =

A.
$$\frac{1}{\sqrt{1-x^2}}$$

B.
$$\frac{1}{\sqrt{1-x^4}}$$

C.
$$\frac{2x}{1+x^4}$$

D.
$$\frac{1}{1+x^4}$$

E.
$$\frac{2x}{\sqrt{1-x^4}}$$