MA161	EXAM 2	October 15, 1998
Name:		
I.D.#:		
Recitation Instructor:		Time of Recitation
Lecturer:	Section#:	

Instructions:

- (1) Fill in your name, student ID number and division and section number on the mark-sense sheet. Also fill out the information requested above.
- (2) This booklet consists of 6 pages. There are 14 questions, each worth 7 points.
- (3) Mark your answers on the mark-sense sheet. Please show your working in this booklet.
- (4) No books, notes or calculators may be used.
- (5) When you are finished with the exam hand this booklet and the mark-sense sheet, in person, to your instructor.

1. If
$$f(t) = \frac{t^2}{1+t^3}$$
, $f'(t) =$
A. $\frac{2t-3t^2}{(1+t^3)^2}$
B. $\frac{1+t^2+t^3}{(1+t^3)^2}$
C. $\frac{2t-t^4}{(1+t^3)^2}$
D. $\frac{2t-5t^4}{(1+t^3)^2}$
E. $\frac{2t}{(1+t^3)^2}$
E. $\frac{2t}{(1+t^3)^2}$
B. $-\sin\left(\frac{1}{3t^2}\right)$
 $-\sin(\ln(3t^2))$

2. If f(t)

A.
$$\frac{-2 \sin(\ln(3t^2))}{t}$$

B.
$$-\sin\left(\frac{1}{3t^2}\right)$$

C.
$$\frac{-\sin(\ln(3t^2))}{3t^2}$$

D.
$$-\frac{1}{\sin(3t^2)}$$

E.
$$\tan(3t^2)$$

3. Given that f(2) = 3, f(8) = 4, f'(2) = 5, f'(8) = -1 and f''(2) = 6, evaluate $\frac{d}{dx}[f(x^3) \cdot f(x)]$

at x = 2.

A. 17 B. 8 C. 0 D. -5E. -16 **MA161**

EXAM 2

October 15, 1998

4. If $g(x) = -e^{-3x} + x^{21} - x^2$ then the twenty-third derivative of g, $g^{(23)}(x) =$ A. $3^{23}e^{-3x}$ B. $-e^{-3x}$ C. $-3^{23}e^{-3x} + 21$ D. 0 E. $-3^{23}e^{-3x}$

5. If
$$x^3 + xy^2 + 3y^3 = \pi^{\frac{1}{2}}$$
 then $\frac{dy}{dx} =$

A.
$$\frac{-x^{2}}{2xy + 9y^{2}}$$

B.
$$\frac{\pi^{\frac{1}{2}} - x^{3}}{xy + 3y^{2}}$$

C.
$$-(3x + y^{2})$$

D.
$$\frac{-3x^{2} - y^{2}}{2xy + 9y^{2}}$$

E.
$$\frac{\pi^{\frac{1}{2}}}{x^{3} + x^{2}y + 3y^{2}}$$

- 6. A spherical balloon is inflated in such a way that after t seconds $V = 36\pi\sqrt{t}$ cubic centimeters. How fast is the radius of the balloon changing when t = 64?
 - A. 1 B. $\frac{1}{16}$ C. $\frac{1}{32}$ D. $\frac{1}{64}$ E. $\frac{1}{128}$

- 7. The edges of a cube are increasing at the rate of 4 inches/min. At what rate is the volume of the cube increasing when the volume is 8 cubic inches?
 - A. 12 in.³/min. B. 16 in.³/min. C. 8π in.³/min. D. 32 in.³/min. E. 48 in.³/min.
- 8. Use the fact that $(16)^{\frac{1}{4}} = 2$ and use linear approximation to approximate $(14)^{\frac{1}{4}}$.

A.
$$2 - \frac{1}{8}$$

B. $2 - \frac{1}{16}$
C. $2 - \frac{1}{32}$
D. 2
E. $2 + \frac{1}{32}$

9. The critical numbers of $f(x) = \frac{200}{x} + 2x - 50$ are

A. 5, 0, 20 B. 5, 20 C. -10, 10 D. -10, 0, 10 E. There are none **MA161**

EXAM 2

10. Find all extreme values (if any) of $f(x) = x^2 + \frac{16}{x}$ on the interval [1, 4]. A. max. value = 20; min. value = 17 B. max. value = 20; min. value = 12 C. max, value = 18; min. value = 8 D. no max. value; min. value = 17

E. no max. value; no min. value

11. A number c in the interval (0,2) for which the line tangent to the graph of $y = x^3 - x^2$ at x = c is parallel to the line through (0,0) and (2,4) is

A. 1
B.
$$\frac{4}{3}$$

C. $\frac{2 + \sqrt{10}}{6}$
D. $\frac{1 + \sqrt{7}}{3}$
E. $\frac{2 + \sqrt{40}}{6}$

MA161

EXAM 2

October 15, 1998

12. Suppose you have a cache of a radioactive substance whose half-life is 250 years. How long will you have to wait for $\frac{4}{5}$ of it to decay (i.e., $\frac{1}{5}$ to remain)?

A.
$$250 \frac{\ln 5}{\ln 2}$$
 years
B. $250 \frac{\ln 2}{\ln 5}$ years
C. $250 \ln \left(\frac{2}{5}\right)$ years
D. $250 \ln \left(\frac{5}{2}\right)$ years

13. Let
$$f(x) = \frac{5}{x}$$
 and $g(x) = x^3$. Then

A. both f and g are increasing on $(0, \infty)$ B. both f and g are decreasing on $(0, \infty)$ C. f is increasing and g is decreasing on $(0, \infty)$ D. f is decreasing and g is increasing on $(0, \infty)$ E. none of the above is true.

14. The function $h(x) = 4x^3 - 3x^4$ has

A. no relative extrema

B. one relative extremum

C. two relative extrema

D. three relative extrema

E. four relative extrema.