Name:
SOLUTIONS
Place your answers in the spaces provided. You must show correct work to receive credit.
(5 pts) 1. Circle all of the following correspondences that are functions:
A.

B.

C.

D.

E.

(7 pts) 2. Given $h(x)=\frac{x+3}{5 x-1}$, find and simplify $h(x+2)$.

$$
h(x+2)=\frac{x+2+3}{5(x+2)-1}=\frac{x+5}{5 x+10-1}
$$

$$
h(x+2)=\frac{x+5}{5 x+9}
$$

(10 pts) 3. Solve the following system of equations using either the substitution or elimination method. Express your answer as an ordered pair.

$$
\begin{aligned}
& 5 x-3 y=3 \\
& 3 x-2 y=1
\end{aligned}
$$

Mult. equation 1 by $2 \Rightarrow 10 x-6 y=6$
Mult. equation 2 by $-3 \Rightarrow-9 x+6 y=-3$
Add equations 1 and 2:
$x=3$
$5(3)-3 y=3$
$15-3 y=3$
$-3 y=-12$
$y=4$

Name:
SOLUTIONS
Place your answers in the spaces provided. You must show correct work to receive credit.
(12 pts) 4. Consider the line with equation $4 x-3 y=6$.
(6 pts) (a) Find the slope and the y-intercept of the line.

$$
\begin{aligned}
& 4 x-3 y=6 \\
& -3 y=-4 x+6 \\
& y=\frac{-4 x+6}{-3} \\
& y=\frac{4}{3} x-2
\end{aligned}
$$

$$
\text { slope }=\frac{4}{3}
$$

$$
y \text {-intercept: } \begin{array}{|c}
-2 \text { or }(0,-2)
\end{array}
$$

(6 pts) (b) Graph the line of the set of axes below. You must label at least two points on your graph.

(16 pts) 5. Given $f(x)=x^{2}-1$ and $g(x)=-2 x+6$, find and simplify each of the following:
(4 pts) (a) $(f-g)(-3)$

$$
\begin{aligned}
f(-3)-g(-3) & =\left((-3)^{2}-1\right)-(-2(-3)+6) \\
& =(9-1)-(6+6)
\end{aligned}
$$

(4 pts) (b) $(f \cdot g)(2)$

$$
f(2) \cdot g(2)=\left(2^{2}-1\right) \cdot(-2(2)+6)=3 \cdot 2
$$

6
(4 pts) (c) $(f / g)(x)$

$$
\frac{f(x)}{g(x)}=\frac{x^{2}-1}{-2 x+6}
$$

(4 pts) (d) the domain of $(f / g)(x)$

$$
\begin{aligned}
& -2 x+6 \neq 0 \\
& -2 x \neq-6
\end{aligned}
$$

$$
x \neq 3 \text { or }\{x \mid x \neq 3\}
$$

Name: \qquad
SOLUTIONS
Place your answers in the spaces provided. You must show correct work to receive credit.
(10 pts) 6. Total profit, P, is defined as total revenue minus total cost. Suppose total revenue is given by $R(x)=x^{2}-65 x+165$ and total cost is given by $C(x)=6 x+1525$, where x is the number of widgets sold. Answer each of the following:
(6 pts) (a) Find and simplify the total profit as a function of x.

$$
\begin{aligned}
P(x) & =R(x)-C(x) \\
& =\left(x^{2}-65 x+165\right)-(6 x+1525) \\
& =x^{2}-65 x+165-6 x-1525
\end{aligned}
$$

$$
P(x)=x^{2}-71 x-1360
$$

(4 pts) (b) Use the function from part (a) to find the profit (or loss) from the sale of 95 widgets.

$$
\begin{aligned}
& P(95)=(95)^{2}-71(95)-1360 \\
& \quad=9025-6745-1360=920
\end{aligned}
$$

(8 pts) 7.

(4 pts) (a) Solve the following inequality for x. Express your answer in interval notation.

$$
\begin{aligned}
& 4 x-9 \leq 7 x \\
-9 & \leq 7 x-4 x \\
-9 & \leq 3 x \\
-3 & \leq x \text { or } x \geq-3
\end{aligned}
$$

(4 pts) (b) Graph your result from part (a).

(10 pts) 8. Find an equation of the line that passes through the point $(-2,7)$ and is perpendicular to the line $y=\frac{1}{5} x+8$. Leave your answer in the form $A x+B y=C$ where A, B, and C are integers.

$$
\begin{aligned}
& m=\frac{1}{5} \text { so } m_{\text {perp. }}=-5 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-7=-5(x+2) \\
& y-7=-5 x-10
\end{aligned}
$$

$$
\begin{aligned}
& y=m x+b \\
& 7=(-5)(-2)+b \\
& b=-3 \\
& y=-5 x-3
\end{aligned}
$$

$$
5 x+y=-3 \text { or }-5 x-y=3
$$

Name: SOLUTIONS
Place your answers in the spaces provided. You must show correct work to receive credit.
(10 pts) 9. Abby recently got a new job in sales where she must choose between two salary plans. Plan A will pay her a salary of $\$ 1200$ per month plus a commission of 7% of her gross sales. Plan B will pay her a salary of $\$ 1050$ per month plus a commission of 9% of her gross sales. Find all amounts of gross sales for which Abby should choose Plan B.
(Name a variable, set up an inequality, and solve.)
let $x=$ amount of gross sales
Plan $\mathrm{A} \Rightarrow 1200+.07 x$
Plan $\mathrm{B} \Rightarrow 1050+.09 x$
Need Plan B > Plan A

$$
\begin{gathered}
1050+.09 x>1200+.07 x \\
.02 x>150 \\
x>7500
\end{gathered}
$$

$$
x>\$ 7500
$$

(12 pts) 10. At a recent basketball game, the Ramblers made 38 baskets and scored 93 points. The only types of baskets made to score the 93 points were two-pointers and three-pointers. Find the number of each type of basket made. (Name a variable(s), set up an equation(s), and solve.)
let $x=$ number of two- pointers
let $y=$ number of three-pointers
$x+y=38$
$2 x+3 y=93$
$y=38-x \Rightarrow 2 x+3(38-x)=93$
$2 x+114-3 x=93$
$-x=-21$
$x=21$
$y=38-21=17$
number of two-pointers $=21$
number of three-pointers $=17$

Name: SOLUTIONS

