Name: \qquad

Circle the correct answer to problems 1-3. You must show work to receive credit.
(6 pts)

1. Which of the following most closely resembles the graph of $2 x+3 y=9$?

$(6$ pts $)$ 2. If $f(x)=4 x+2$ and $g(x)=x^{2}-6$, find $(f-g)(5)$
A. 3
B. 53
C. -9
D. 41
E. -41
$(6 \mathrm{pts})$ 3. Find the slope of the line containing $(7,-2)$ and $(3,4)$
A. $m=\frac{2}{3}$
B. $m=-\frac{2}{3}$
C. $m=0$
D. $m=-\frac{3}{2}$
E. slope is
undefined

Name: \qquad

Place your answers in the space provided. You must show your work to receive credit. (10 pts)
4. Write an equation of the line through the point $(0,3)$ and perpendicular to the line $3 x-y=7$
(12 pts) 5. Multiply and simplify your answer.
$(6 \mathrm{pts})$ a. $(y+2)\left(\mathrm{y}^{2}-5 \mathrm{y}+10\right)$
(6 pts)
b. $(x-7)^{2}$

(10 pts) 6. If $f(x)=\frac{3}{x+3}$ and $g(x)=\frac{4}{x-4}$, find the domain of $(f \cdot g)(x)$

Name: \qquad
(12 pts)
Place your answers in the space provided. You must show your work to receive credit.
7. Factor completely.
(6 pts)
a. $\quad 3 x^{3} y-27 x y$
(6 pts) b. $\quad 7 x^{2}+35 x-98$

\square
(14 pts)
8. In 1940 the record for the shot put (a track and field event) was 42 feet. In 1960, it was 49.5 feet. Let R represent the record in the shot put in feet and t the number of years since 1940.
(8 pts)
a. Find a linear function $\mathrm{R}(t)$ that fits the data. Use proper notation.
$(6 \mathrm{pts}) \mathrm{b}$. Use this function to predict the shot put record in 1999.
\square

Name: \qquad

Place your answers in the space provided. You must show your work to receive credit.
9. President Beering's boat took 6 hours to travel with the current and 10 hours to travel the same distance against the current. The current is 5 miles per hour. (Name a variable(s), set up an equation and solve.)
(6 pts)
a. Find the speed of President Beering's boat in still water.
\square
(6 pts) b. Find the TOTAL distance he traveled in the boat.

Total distance
Traveled =
(12 pts)
10.How much of a 30% saline solution is to be mixed with a 45% saline solution to get 300 liters of 41% saline solution? (Name a variable(s), set up an equation and solve.)

