1. $\frac { 7 } { 1 6 } = 1 6 \longdiv { 0 . 4 3 7 5 } 7 . 0 0 0 0 = 4 3 . 7 5 \%$
2. $\left(\frac{2}{5}+\frac{1}{4}\right) \div \frac{1}{5}$
$\left(\frac{8}{20}+\frac{5}{20}\right) \div \frac{1}{5}$
$\left(\frac{13}{20}\right) \div \frac{1}{5}$
$\frac{13}{20} \cdot \frac{5}{1}=\frac{13}{4} \cdot \frac{1}{1}=\frac{13}{4}$
3. $m=\frac{3-(-2)}{1-3}=\frac{3+2}{-2}=\frac{5}{-2}=-\frac{5}{2}$
4. $\left(\frac{1}{2} x-5\right)^{2}$
$\left(\frac{1}{2} x-5\right)\left(\frac{1}{2} x-5\right)$
$\frac{1}{4} x^{2}-\frac{5}{2} x-\frac{5}{2} x+25$
$\frac{1}{4} x^{2}-\frac{10}{2} x+25$
$\frac{1}{4} x^{2}-5 x+25$
5. $3 x-5 y=-4$
$-5 y=-3 x-4$
$y=\frac{3}{5} x-\frac{4}{5}$
Since the slope $=\frac{3}{5}$,
the perpendicular slope $=-\frac{5}{3}$
6. $3 x-7>5 x+6$
$-2 x-7>6$
$-2 x>13$
$\mathrm{x}<-\frac{13}{2}$
7. $y=\frac{k}{x} \quad y=\frac{108}{x}$

$$
\begin{array}{ll}
18=\frac{k}{6} & 2=\frac{108}{x} \\
\mathrm{k}=108 & 2 \mathrm{x}=108 \\
& \mathrm{x}=54
\end{array}
$$

8. $\quad\left(\frac{a^{2} b^{-3}}{a^{-3} b^{2}}\right)^{-2}=\frac{a^{-4} b^{6}}{a^{6} b^{-4}}=\frac{b^{10}}{a^{10}}=\left(\frac{b}{a}\right)^{10}$
9. $\frac{(x-1)(x-1)}{(x-1)(x+1)} \cdot \frac{(x-2)}{(x-2)(x-1)}$

$$
\begin{aligned}
& \frac{(x-1)(x-1)}{(x-1)(x+1)} \cdot \frac{(x-2)}{(x-2)(x-1)} \\
& \frac{1}{(x+1)}
\end{aligned}
$$

10. $x^{3}+x^{2}-a x^{2}-a x$
$x\left(x^{2}+x-a x-a\right)$
$x\left[\left(x^{2}+x\right)+(-a x-a)\right]$
$x[x(x+1)-a(x+1)]$
$x(x-a)(x+1)$ These three are the factors
11. $12 \sqrt{45}-8 \sqrt{80}$

$$
12 \sqrt{9 \cdot 5}-8 \sqrt{16 \cdot 5}
$$

$$
36 \sqrt{5}-32 \sqrt{5}
$$

$$
4 \sqrt{5}
$$

12. $A=\frac{1}{2} h(a+b)$

$$
2 A=h(a+b)
$$

$$
\frac{2 A}{(a+b)}=h
$$

$$
h=\frac{2 A}{(a+b)}
$$

13. $\left\{\begin{array}{l}3 x+y=-1 \\ x+2 y=3\end{array}\right.$
$-2(3 x+y)=-2(-1)$
$x+2 y=3$
$-6 x-2 y=2$
$x+2 y=3$
$-5 x=5$

$$
x=-1
$$

14. $2 x^{2}-3 x=2$
$2 x^{2}-3 x-2=0$
$(2 x+1)(x-2)=0$
$2 \mathrm{x}+1=0 \quad \mathrm{x}-2=0$
$2 \mathrm{x}=-1$
$x=-\frac{1}{2} \quad x=2$
answer: $-\frac{1}{2}, 2$
15. $\frac{1}{x-4}-\frac{1}{x-2}=\frac{1}{4}$

LCD: $4(\mathrm{x}-4)(\mathrm{x}-2)$
$\left(\frac{1}{x-4}-\frac{1}{x-2}=\frac{1}{4}\right) 4(x-4)(x-2)$
$4(x-2)-4(x-4)=(x-4)(x-2)$
$4 \mathrm{x}-8-4 \mathrm{x}+16=\mathrm{x}^{2}-6 \mathrm{x}+8$
$8=x^{2}-6 x+8$
$x^{2}-6 x=0$
$x(x-6)=0$
$x=0 \quad x-6=0$
$\mathrm{x}=6$
answer: $x=0$ and $x=6$
16. $\frac{\sqrt{10}}{\sqrt{3 x}} \cdot \frac{\sqrt{3 x}}{\sqrt{3 x}}=\frac{\sqrt{30 x}}{3 x}$
17.

$$
\begin{aligned}
& x=\frac{-2 \pm \sqrt{4-4(2)(-1)}}{4} \\
& =\frac{-2 \pm \sqrt{4+8}}{4} \\
& =\frac{-2 \pm \sqrt{12}}{4}=\frac{-2}{4} \pm \frac{2 \sqrt{3}}{4} \\
& =-\frac{1}{2} \pm \frac{\sqrt{3}}{2} \\
& x=\frac{1}{2}+\frac{1}{2} \sqrt{3} \text { and } x=-\frac{1}{2}-\frac{1}{2} \sqrt{3}
\end{aligned}
$$

18. $\log \sqrt{\frac{z^{3}}{x y}}=\log \left(\frac{z^{3}}{x y}\right)^{\frac{1}{2}}=\frac{1}{2} \log \left(\frac{z^{3}}{x y}\right)$

$$
\begin{aligned}
& \frac{1}{2}\left(\log z^{3}-(\log x+\log y)\right) \\
& \frac{1}{2}(3 \log z-\log x-\log y) \\
& \frac{3}{2} \log z-\frac{1}{2} \log x-\frac{1}{2} \log y
\end{aligned}
$$

19. $\left(\frac{1}{8}\right)^{-\frac{2}{3}}=8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}=2^{2}=4$
20. $\log _{a} 7-\log _{a} 20+2 \log 4$
$\log _{a} 7-\log _{a} 20+\log _{a} 4^{2}$
$\log _{a} 7-\log _{a} 20+\log _{a} 16$
$\log _{a} \frac{7(16)}{20}=\log _{a} \frac{112}{20}=\log _{a} \frac{28}{5}$
21. $\log _{2} \frac{1}{16}=$

$$
\log _{2} \frac{1}{16}=x
$$

$$
2^{x}=\frac{1}{16}
$$

$$
x=-4
$$

$$
\log _{2} \frac{1}{16}=-4
$$

22. $y=\log _{3}(x+1)$
$3^{y}=x+1$
y-intercept means find the point where the graph crosses the y-axis

- This is when $\mathrm{x}=0$
- Put 0 in for x and find y.

$$
3^{y}=0+1
$$

$3^{y}=1$, therefore $y=0$ since $3^{0}=1$
The graph crosses the y-axis at $(0,0)$ so $t \quad$ therefore the y-intercept $=0$
23. $\mathrm{y}=2^{-\mathrm{x}}$

x	y
-2	4
-1	2
0	1
1	0.5
2	0.25

24. $\log _{3} x=2$
$3^{2}=x$
$\mathrm{x}=9$
25. let x and y be the two numbers.

$$
\begin{aligned}
x+y & =\frac{3}{2} \\
x-y & =\frac{1}{2} \\
\hline 2 x & =\frac{4}{2} \\
2 x & =2 \\
\mathrm{x} & =1, \quad 1-y=\frac{1}{2}
\end{aligned}
$$

The smaller of the two is $\frac{1}{2}$
26.

	Present	Three years ago
Bob	$25+\mathrm{x}$	$25+\mathrm{x}-3=22+\mathrm{x}$ and $2(\mathrm{x}-3)$
Jane	x	$\mathrm{x}-3$

$22+\mathrm{x}=2(\mathrm{x}-3)$
$22+\mathrm{x}=2 \mathrm{x}-6$
$28+\mathrm{x}=2 \mathrm{x}$
$28=x$
Jane is 28 years old at the present time.
27. Paul: 5 hours alone

Sally: 3 hours alone
Together: thours

$$
\frac{1}{5}(t)+\frac{1}{3}(t)=1
$$

LCD is 15 , therefore multiply both sides by 15

$$
\begin{aligned}
& 3 t+5 t=15 \\
& 8 t=15 \\
& t=\frac{15}{8}=1 \frac{7}{8} \text { hours }
\end{aligned}
$$

28.

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& 18=\frac{1}{2}(x-5)(x) \\
& 36=x^{2}-5 x \\
& x^{2}-5 x-36=0 \\
& (x-9)(x+4)=0 \\
& x-9=0 \text { and } x+4=0 \\
& x=9 \text { and } \quad x=-4
\end{aligned}
$$

Since we cannot have a negative length, $x=9$, and the base $=9-5=4$ inches.
29.

	distance	rate	time
Car 1	D_{1}	$\mathrm{r}+10$	3
Car 2	D_{2}	r	3

Time $=3$ hours since they left at
2:00 PM and meet at 5:00 PM
Since D = rt
$\mathrm{d}_{1}=3(\mathrm{r}+10)$ and $\mathrm{d}_{2}=3 \mathrm{r}$
Sine the towns are 240 miles apart,
$\mathrm{d}_{1}+\mathrm{d}_{2}=240$, therefore
$3(\mathrm{r}+10)+3 \mathrm{r}=240$
$3 r+30+3 r=240$
$6 r+30=240$
$6 \mathrm{r}=210$
$r=35$ and $r+10=45$
The rate of the faster car is 45 mph
30. Let $\mathrm{c}=$ cost of the radio to the dealer $0.55 \mathrm{c}=$ the markup on the radio
$\mathrm{c}+0.55 \mathrm{c}=$ the amount he sells the radio
$c+0.55 \mathrm{c}=30.00$
$1.55 \mathrm{c}=30.00$
$\mathrm{c}=19.35483871$
Therefore, the radio sells for $\$ 19.35$
31. $\mathrm{I}=\mathrm{Prt}$
$\mathrm{P}=$ Principle (Amount invested)
$\mathrm{r}=$ interest rate (As a decimal)
$\mathrm{t}=$ time (In years)
$\mathrm{x}=$ amount invested at 8%
$4800-x=$ amount invested at 9%
Since $\mathrm{I}=\mathrm{Prt}$,
$\mathrm{x}(.08)(1)=$ interest earned at 8%
$(4800-x)(.09)(1)=$ interest earned at 9%
$412=$ total interest earned
$412=x(.08)(1)+(4800-x)(.09)(1)$
$412=.08 \mathrm{x}+(.09)(4800-\mathrm{x})$
$412=.08 x+432-.09 x$
$-20=-.01 x$
$x=2000$
$\$ 2000$ was invested at 8%
$\$ 2800$ was invested at 9%

