Name: \qquad

Student ID:

\qquad
Instructor: \qquad
Class Hour: \qquad

Instructions:

(1) Please fill in all the above information and write your name on the top of each of the 4 exam pages.
(2) The point value on each problem appears to the left of the problem.
(3) You must show sufficient work to justify all answers. Correct answers with inconsistent work may not be given credit.
(4) No partial credit will be given on problems 1-3. Partial credit may be obtained on problems 4-9 provided sufficient work is shown.
(5) Circle the letter of the correct answer in problems 1-3 and write the answers to problems 4-9 in the spaces provided.
(6) No books or papers are allowed. Calculators may be used where appropriate.
(7) The exam is self-explanatory. Please do not ask the instructors to interpret any of the exam questions.

Page	Points	Max Possible
1		24
2		28
3		22
4		26
Total		100

Name: \qquad
Circle your answer for problems 1-3. You must show correct work to receive credit.
(8 pts) 1. Find the difference and express as a polynomial:

$$
\left(3 x^{3}-x+5\right)-\left(3 x^{2}-9 x-8 x^{3}+2\right)
$$

A. $11 x^{3}-3 x^{2}+8 x+3$
B. $8 x^{3}+8 x+3$
C. $5 x^{3}+3 x^{2}+10 x-7$
D. $11 x^{3}+3 x^{2}-10 x+7$
E. None of the above
(8 pts) 2. Simplify:

$$
\frac{\frac{1}{a}-b}{\frac{1}{b}-a}
$$

A. $\frac{(1-a b)^{2}}{a b}$
B. 1
C. $\frac{b(1-b)}{a(1-a)}$
D. 0
E. $\frac{b}{a}$
(8 pts) 3. The area of a trapezoid is given by the formula $A=\frac{h(b+c)}{2}$.
Solve this formula for b.

$$
\begin{aligned}
& \text { A. } b=2 A-h-c \\
& \text { B. } b=\frac{2 A-c}{h} \\
& \text { C. } b=\frac{h A+h c}{2} \\
& \text { D. } b=\frac{h-2 A c}{2 A} \\
& \text { E. } b=\frac{2 A-h c}{h}
\end{aligned}
$$

Name: \qquad
Place your answer in the space provided. You must show your work to receive credit.
(9 pts) 4. Simplify completely. Eliminate negative exponents in your answer. $(x \neq 0, y \neq 0)$

$$
\frac{\left(4 x^{2} y^{2}\right)(2 y)^{-3}}{x y^{-4}}
$$

(19 pts) 5. Factor each of the following as much as possible:
(10 pts) (a) $16 x^{6} y-81 x^{2} y$

(9 pts) (b) $3 x^{3}+6 x^{2}-15 x-30$

Name: \qquad
Place your answer in the space provided. You must show your work to receive credit.
(12 pts) 6. Divide and simplify completely. (Leave your answer in factored form.)

$$
\frac{x^{2}-7 x+12}{2 x^{2}-7 x-4} \div \frac{x-5}{2 x^{2}-5 x-3}
$$

(10 pts) 7. Solve for x .

$$
\frac{4}{x-1}-\frac{9}{x+1}=\frac{3 x+2}{x^{2}-1}
$$

Name: \qquad
Place your answer in the space provided. You must show your work to receive credit.
(14 pts) 8. The length of a rectangular garden is 5 feet longer than three times the width. If the owner plans to use 238 feet of fencing to enclose the garden, find the dimensions of the garden. (Draw and label a picture, set up an equation, and solve.)

$$
\begin{aligned}
& \text { Length }=\square \\
& \text { Width }=\square
\end{aligned}
$$

(12 pts) 9. A motorboat can maintain a constant speed of 16 miles per hour in still water. The boat makes a trip upstream to a certain point in $\frac{2}{5}$ of an hour and then travels back to the starting point downstream in $\frac{1}{4}$ of an hour. Find the rate of the current. Round your answer to the nearest tenth.
(Name a variable, set up an equation, and solve.)

