Name: \qquad
Circle your answer to problems 1-3. You must show correct work to receive credit.
(8 pts.) 1) $i(2-3 i)^{2}=$
A. $12-5 i$

B $13 i$
C. 5
D. $12+13 i$
E. $13+5 i$
F. $5+12 i$
G. None of the above
(8 pts.) 2) Find the distance between $(2,3)$ and $(-6,1)$.
A. $2 \sqrt{5}$
B. $2 \sqrt{17}$
C. $\sqrt{82}$
D. $4 \sqrt{2}$
E. $\sqrt{6}$
F. $4 \sqrt{5}$
(8 pts.) 3) Solve $B=\frac{1}{3} k\left(1+r^{2}\right)$ for r. Assume $r>0$.
A. $r=\sqrt{\frac{3 B}{k}-1}$
B. $r=\sqrt{\frac{B}{k}-1}$
C. $r=\sqrt{3 B-k-1}$
D. $r=\sqrt{B-\frac{1}{3} k-1}$
E. $r=\sqrt{\frac{B}{3 k}+1}$
F. $r=\sqrt{\frac{3 B}{k}-3}$

Name: \qquad
Place your answers in the spaces provided. You must show correct work to receive credit.
(18 pts.) 4) Solve for x. Simplify completely.
$(10$ pts. $)$ a) $3 x^{2}+6 x+4=0$
$(8$ pts. $) \quad$ b) $\quad \sqrt{x+18}=2-x$

(8 pts.) 5. Solve the inequality and express your answer in interval notation.

$$
|x-2| \geq 4
$$

Name: \qquad
Place your answers in the spaces provided. You must show correct work to receive credit.
(8 pts.) 6. Find a general form, $\mathrm{A} x+\mathrm{B} y=\mathrm{C}$, (where A, B and C are integers), of the equation of the line through $(-4,3)$ and perpendicular to the line $2 x-5 y=15$.

(8 pts.) 7. Find the standard form of the equation of the circle with endpoints of a diameter at $(-3,-5)$ and $(-7,9)$.
(12 pts.) 8. Solve the inequality and express the solution in interval notation. You must use a sign chart (or equivalent) to support your answer.

$$
x^{3}-4 x^{2}+4 x>0
$$

Name: \qquad
Place your answers in the spaces provided. You must show correct work to receive credit.
(10 pts.) 9. Bill's allowance in 1970 was $\$ 49$. In 2000, still living at home (how sad), his allowance was $\$ 124$. Assume his allowance is linearly related to time. Express his allowance, A (in dollars), in terms of time, t (in years), with $t=0$ corresponding to the year 1970.
(12 pts.) 10. Starting with a piece of cardboard whose length is 3 inches longer than twice its width, an open box (no top) is to be constructed by removing 2 -inch squares from the corners and folding up the sides. What does the original width of the cardboard have to be in order to produce a box with a volume of 30 cubic inches? Label the picture, set up an equation, and solve.

