Place your answers in the spaces provided. You must show correct work to receive credit.
(8 pts.) 1. Find all the solutions of the equation that are in the interval [$0^{\circ}, 360^{\circ}$). Round the answer(s) to the nearest 0.01°.
$\csc \theta=-2.15$
$\sin \theta=-0.4651$
$\theta_{R}=27.72^{\circ}$
Sine is negative in QIII and QIV
$\theta=180^{\circ}+27.72^{\circ}=207.72^{\circ}$
$\theta=360^{\circ}-27.72^{\circ}=332.28^{\circ}$

$207.72^{\circ}, 332.28^{\circ}$

(8 pts.) 2. Find the exact value of $\sin (2 \theta)$ if $\cot \theta=\frac{8}{3}$ and $180^{\circ}<\theta<270^{\circ}$.

$c^{2}=3^{2}+8^{2}$ $c=\sqrt{73}$
$\sin (2 \theta)=2 \sin \theta \cos \theta$
$\sin (2 \theta)=2\left(-\frac{3}{\sqrt{73}}\right)\left(-\frac{8}{\sqrt{73}}\right)$
$\sin (2 \theta)=\frac{48}{73}$

(10 pts.) 3. Find all the solutions of the equation that are in the interval $[0,2 \pi)$.

$$
1+\sin \theta=2\left(1-\sin ^{2} \theta\right)
$$

$$
\begin{array}{ll}
1+\sin \theta=2-2 \sin ^{2} \theta \\
2 \sin ^{2} \theta+\sin \theta-1=0 & \\
(2 \sin \theta-1)(\sin \theta+1)=0 \\
2 \sin \theta-1=0 & \sin \theta+1=0 \\
2 \sin \theta=1 & \sin \theta=-1 \\
\sin \theta=\frac{1}{2} & \theta=\frac{3 \pi}{2} \\
\theta=\frac{\pi}{3}, \frac{5 \pi}{3} &
\end{array}
$$

$$
\begin{aligned}
& 1+\sin \theta=2-2 \sin ^{2} \theta \\
& 2 \sin ^{2} \theta+\sin \theta-1=0 \\
& \sin \theta=\frac{-1 \pm \sqrt{1-4(2)(-1)}}{2(2)} \\
& \sin \theta=\frac{-1 \pm \sqrt{1+8}}{4}=\frac{-1 \pm \sqrt{9}}{4}=\frac{-1 \pm 3}{4} \\
& \sin \theta=\frac{2}{4}=\frac{1}{2} \quad \sin \theta=\frac{-4}{4}=-1 \\
& \theta=\frac{\pi}{3}, \frac{5 \pi}{3} \quad \theta=\frac{3 \pi}{2}
\end{aligned}
$$

Place your answers in the spaces provided. You must show correct work to receive credit.
(16 pts.)
4. If $\tan \alpha=\frac{24}{7}$ and $\sin \beta=-\frac{7}{25}$ for a first quadrant angle α and a third quadrant angle β, find and simplify:

$$
\begin{array}{|l|}
\hline b^{2}+24^{2}=5^{2} \\
b^{2}=625-576 \\
b=7
\end{array}
$$

$$
\begin{aligned}
& c^{2}=24^{2}+7^{2} \\
& c^{2}=576+49 \\
& a=25
\end{aligned}
$$

(8 pts.)

$$
\text { a) } \sin (\alpha+\beta)
$$

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \sin (\alpha+\beta)=\left(\frac{24}{25}\right)\left(-\frac{24}{25}\right)+\left(\frac{7}{25}\right)\left(-\frac{7}{25}\right) \\
& \sin (\alpha+\beta)=\left(-\frac{576}{625}\right)+\left(-\frac{49}{625}\right)=-\frac{625}{625}=-1
\end{aligned}
$$

(8 pts.)
b) $\cos (\alpha-\beta)$

$$
\begin{aligned}
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \cos (\alpha-\beta)=\left(\frac{7}{25}\right)\left(-\frac{24}{25}\right)+\left(\frac{24}{25}\right)\left(-\frac{7}{25}\right) \\
& \cos (\alpha-\beta)=\left(-\frac{168}{625}\right)+\left(-\frac{168}{625}\right)=-\frac{336}{625}
\end{aligned}
$$

(12 pts.) 5. Find the exact radian value of the expression whenever it is defined.
$\left(\begin{array}{l}\left.6 \text { pts. }) \quad \text { a) } \quad \sin ^{-1}\left(-\frac{1}{2}\right)\right)\end{array}\right.$

(6 pts.) b) $\tan ^{-1}(1)$

Place your answers in the spaces provided. You must show correct work to receive credit.
(10 pts.) 6. Write the expression as an algebraic expression in x for $x>0$.

$$
\begin{aligned}
& \cos \left(\tan ^{-1} x\right) \\
& \begin{array}{l}
\alpha=\tan ^{-1} x \\
\tan \alpha=x \\
c^{2}=x^{2}+1^{2} \\
c=\sqrt{x^{2}+1} \\
\cos \alpha=\frac{1}{\sqrt{x^{2}+1}}
\end{array}
\end{aligned}
$$

(12 pts.) 7. Verify the identity:

$$
\sin (\pi+\theta)=-\sin \theta
$$

$$
\begin{aligned}
& \sin \pi \cos \theta+\cos \pi \sin \theta= \\
& (0) \cos \theta+(-1) \sin \theta= \\
& -\sin \theta=-\sin \theta
\end{aligned}
$$

Place your answers in the spaces provided. You must show correct work to receive credit.
(12 pts.) 8. Solve $\triangle \mathrm{ABC}$. Round angle measures to the nearest minute and lengths to one decimal place.
$\alpha=40^{\circ} 12^{\prime}, \gamma=31^{\circ} 42^{\prime}, a=5.1$
$\beta=180^{\circ}-\left(40^{\circ} 12^{\prime}+31^{\circ} 42^{\prime}\right)$
$\beta=180^{\circ}-\left(71^{\circ} 54^{\prime}\right)$
$\beta=108^{\circ} 6^{\prime}$

$$
\begin{aligned}
& \frac{\sin 40^{\circ} 12^{\prime}}{5.1}=\frac{\sin 108^{\circ} 6^{\prime}}{b} \\
& b=\frac{5.1\left(\sin 108^{\circ} 6^{\prime}\right)}{\sin 40^{\circ} 12^{\prime}}=\frac{4.8}{0.65} \\
& b=7.5
\end{aligned}
$$

$\frac{\sin 40^{\circ} 12^{\prime}}{5.1}=\frac{\sin 31^{\circ} 42^{\prime}}{c}$
$c=\frac{5.1\left(\sin 31^{\circ} 42^{\prime}\right)}{\sin 40^{\circ} 12^{\prime}}=\frac{2.68}{0.65}$
$c=4.2$

(12 pts.) 9. Two automobiles leave Lafayette at the same time and travel along straight highways that differ in direction by 75°. If their speeds are $60 \mathrm{mi} . / \mathrm{hr}$. and 40 $\mathrm{mi} . / \mathrm{hr}$. respectively, how far apart are the cars 1.5 hours after leaving Lafayette? Round your answer to one decimal place. (Draw and label a diagram, set up an equation(s), and solve.)

60 mph or 90 miles

$$
\begin{aligned}
& 40(1.5)=60 \text { miles } \\
& 60(1.5)=90 \text { miles } \\
& d^{2}=90^{2}+60^{2}-2(90)(60) \cos 75^{\circ} \\
& d^{2}=8,100+3,600-10,800(0.2588) \\
& d^{2}=11,700-2,795.25 \\
& d^{2}=8,904.75 \\
& d=94.4
\end{aligned}
$$

