EXAM 1

Name\_\_\_\_\_

Circle the correct answer for 1 - 3. You must show your work to receive credit.

(8 pts) 1. Convert 15 radians to degrees, minutes and seconds.

A. 139.44°
B. 26° 17 59
C. 859° 26 12
D. 139° 26 12
E. None of these

(8 pts) 2. Find the reference angle, <sub>R</sub> to the nearest tenth of a degree, if  $= -\frac{29}{7}$ .

A.  $_{R} = -745.7^{\circ}$ B.  $_{R} = -385.7^{\circ}$ C.  $_{R} = -25.7^{\circ}$ D.  $_{R} = 334.3^{\circ}$ E. None of these

(8 pts) 3. A point, P(t) has coordinates  $\frac{-5}{\sqrt{106}}, \frac{9}{\sqrt{106}}$  on a unit circle corresponding to a real number t. Find P(-t).

A. 
$$\frac{5}{\sqrt{106}}, \frac{9}{\sqrt{106}}$$
  
B.  $\frac{-5}{\sqrt{106}}, \frac{9}{\sqrt{106}}$   
C.  $\frac{-5}{\sqrt{106}}, \frac{-9}{\sqrt{106}}$   
D.  $\frac{5}{\sqrt{106}}, \frac{-9}{\sqrt{106}}$   
E. None of these

Name\_\_\_\_

Place your answer in the space provided. You must show your work to receive credit.

(12 pts) 4. Verify the following identity. You can only work with one side at a time.

 $\frac{\cos x}{1-\sin x} = \frac{1+\sin x}{\cos x}$ 

(12 pts) 5. Approximate to the nearest  $0.01^{\circ}$ , the degree measures of all angles that are in the interval  $[0^{\circ}, 360^{\circ})$  such that sin = -0.4772.

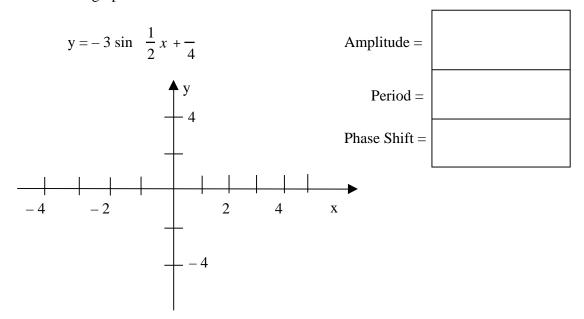


(12 pts) 6. Calculate the radius of a circle, rounded to the nearest tenth of a meter, which has a central angle of  $142^{\circ}$  subtended by an arc of length 48.2 meters.

| Radius = |  |
|----------|--|
|----------|--|

Name\_\_\_\_\_

Place your answer in the space provided. You must show your work to receive credit.


(12 pts) 7. a) Find the exact value of tan if  $\sin = -5/13$  and  $\sec > 0$ .

b) Find the exact value of csc if  $\tan = -3/5$  and  $\cos < 0$ .



tan =

(16 pts) 8. Find the amplitude, period, phase shift, and sketch one period starting at the phase shift of the graph of:



Name\_\_\_\_\_

Place your answer in the space provided. You must show your work to receive credit.

(12 pts) 9. A rocket is fired straight up and climbs to an altitude of 12,500 feet. An observation radar some distance away on level ground records an angle of 75<sup>o</sup> when the rocket stops climbing. How far, to the nearest foot, is the observation radar from the rocket when it stops climbing? (Draw and label a sketch, set up an equation(s) and solve.)

Distance =