Name \qquad

Place your answers in the space provided. You must show your work to receive credit.
Note: There is no partial credit for problems 1-3.
(8 pts) 1. If $\sin \theta=\frac{1}{5}$ and θ is an acute angle, find the exact value of $\cos 2 \theta$. (Do NOT use a calculator.)
\square
(8 pts) 2. Find all the solutions in radians for the following. (Do NOT use a calculator.) $\sec \beta=2$

(8 pts) 3. Find the exact value. (Do NOT use a calculator.)

$$
\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{5}\right)
$$

$$
\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{5}\right)=\square
$$

Name \qquad

Place your answers in the space provided. You must show your work to receive credit.
(12 pts) 4. Verify the identity. Work with only one side at a time.

$$
\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}=2 \csc ^{2} \theta
$$

(12 pts) 5. If α is in quadrant III with tan $\alpha=\frac{4}{3}$ and β is in quadrant II with $\cos \beta=-\frac{5}{6}$ find $\sin (\alpha-\beta)$.

$$
\sin (\alpha-\beta)=\square
$$

(12 pts) 6. Find all the solutions in the interval $[0,2 \pi)$ for

$$
2 \cos ^{2} \theta-\cos \theta-1=0
$$

$$
\theta=\square
$$

Name \qquad

Place your answers in the space provided. You must show your work to receive credit.
(14 pts) 7. A ship leaves port at $1: 00 \mathrm{pm}$ and sails in the direction $\mathrm{N} 34^{\circ} \mathrm{W}$ at a rate of 24 $\mathrm{mi} / \mathrm{hr}$. Another ship leaves the same port at $1: 30 \mathrm{pm}$ and sails in the direction $\mathrm{N} 56^{\circ} \mathrm{E}$ at a rate of $18 \mathrm{mi} / \mathrm{hr}$. At 3 pm , what is the bearing, to the nearest degree, from the first ship to the second? (Draw and label a sketch, write an equation(s), and solve.)

$$
\text { Bearing }=\square
$$

(12 pts) 8. A buyer is interested in purchasing a triangular lot with vertices LOT, but unfortunately, the marker at point L has been lost. The deed indicates that TO is 453 feet and LO is 312 feet, and the angle at O is 82.6°. What is the distance from L to T ? (Draw and label a sketch, write an equation(s) and solve.) Round your answer to the nearest tenth of a foot.
\square

Name

Place your answers in the space provided. You must show your work to receive credit.
(14 pts) 9. A ski lift is planned for the south slope of Mt. Frissell in Connecticut. A surveyor determines the angle of elevation from the start of the lift to the end of the lift is 34.06°. On level ground 1000 feet away from the start, the angle of elevation to the end of the lift is 27.77°. What is the length of the ski lift? (Draw and label a sketch, set up an equation(s) and solve.) Round your answer to the nearest foot.

Length $=\square$

