Name \qquad

Circle your answers to problems 1-3. You must show your work to receive credit.
(8 pts) 1. Completely simplify the expression $\frac{1-\sin x}{\cos x}-\frac{\cos x}{1+\sin x}$.
A. $\frac{2}{(1+\sin x) \cos x}$
B. 2
C. $-\frac{2 \sin ^{2} x}{(1+\sin x) \cos x}$
D. 0
E. $\frac{2 \sin x}{1+\sin x}$
(8 pts) 2. Find all the solutions of $1+2 \cos x=0$ in the interval $[0,2 \pi)$.
A. $\frac{\pi}{6}, \frac{5 \pi}{6}$
B. $\frac{\pi}{3}, \frac{2 \pi}{3}$
C. $\frac{2 \pi}{3}, \frac{5 \pi}{3}$
D. $\frac{7 \pi}{6}, \frac{11 \pi}{6}$
E. $\frac{2 \pi}{3}, \frac{4 \pi}{3}$
(8 pts) 3. Find the exact value of $\tan \left(\frac{5 \pi}{12}\right)$.
A. $\sqrt{3}+1$
B. $\sqrt{3}-1$
C. $2+\sqrt{3}$
D. $2-\sqrt{3}$
E. None of these.

Name \qquad

Place your answers in the spaces provided. You must show your work to receive credit.
(12 pts) 4. Find all the solutions of $2 \sin ^{2} x=3 \sin x-1$ in the interval $[0,2 \pi)$.

(12 pts) 5. If α and β are acute angles such that $\cos \alpha=\frac{24}{25}$ and $\tan \beta=\frac{15}{8}$, find the exact value of $\sin (\alpha-\beta)$. Simplify your answer.

$$
\sin (\alpha-\beta)=\square
$$

(12 pts) 6. Find the exact value of $\cos 105^{\circ}$. Do not use a calculator. Simplify your answer.

$$
\cos 105^{\circ}=\square
$$

Name \qquad

Place your answers in the spaces provided. You must show your work to receive credit.
(16 pts) 7. Find the exact value of the following. Do not use a calculator.
$(8 \mathrm{pts}) \mathrm{a}) \quad \cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

$$
\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\square
$$

$(8 \mathrm{pts}) \mathrm{b}) \quad \tan \left(\arcsin \frac{2}{3}\right)$

$$
\tan \left(\arcsin \frac{2}{3}\right)=\square
$$

(12 pts) 8. Radio direction finders are set up at points A and B, which are 2.50 miles apart on an east-west line. From A it is found that the bearing to a radio transmitter is $\mathrm{N} 15^{\circ} \mathrm{E}$, while from B the bearing to the same radio transmitter is $\mathrm{N} 41^{\circ} \mathrm{W}$. Find the distance from each of the radio finders, A and B , to the radio transmitter. (Draw and label a sketch, set up an equation(s) and solve.) Round your answers to the nearest hundredth of a mile.
Distance from A $=\square$
Distance from B $=\square$

Name \qquad

Place your answers in the spaces provided. You must show your work to receive credit.
(12 pts) 9. A tunnel for hydroelectric power is to be constructed through a mountain from one reservoir to another at a lower level. The distance from the top of the mountain to the lower end of the tunnel is 5.32 mi , and from the top of the mountain to the upper end of the tunnel is 2.63 mi . The angles of depression of the two slopes of the mountain are 35° and 27° respectively. What is the length of the tunnel? (Name a variable, set up an equation(s), and solve.) Round your answer to the nearest hundredth of a mile.

\square

