Name \qquad

Circle the correct answer to $1-3$. You must show your work to receive credit.
(8 pts) 1. Completely simplify the expression $\frac{\sin x}{1+\sin x}-\frac{\sin x}{1-\sin x}$
A. $2 \csc ^{2} x$
B. $-2 \tan ^{2} x$
C. $2 \sec ^{2} x$
D. $-2 \cot ^{2} x$
E. $-2 \csc ^{2} x$
(8 pts) 2. Find the exact value of $\cos ^{-1}\left(\cos \left(\frac{4 \pi}{3}\right)\right)$.
A. $\frac{5 \pi}{3}$
B. $\frac{4 \pi}{3}$
C. $\frac{2 \pi}{3}$
D. $\frac{\pi}{3}$
E. None of these
(8 pts) 3. Find the value of $\cos \frac{\theta}{2}$ if $\tan \theta=\frac{15}{8}$ and $180^{\circ}<\theta<270^{\circ}$.
A. $\frac{3}{5}$
B. $-\frac{3}{\sqrt{34}}$
C. $\frac{3}{\sqrt{34}}$
D. $-\frac{5}{\sqrt{34}}$
E. None of these

Name \qquad

Place your answer in the space provided. You must show your work to receive credit.
(12 pts) 4. Find the exact solutions to $\cos 2 \mathrm{x}=2+3 \sin \mathrm{x}$ in $\left[0^{\circ}, 360^{\circ}\right)$.
(Do not use a calculator.)

(12 pts) 5. If α is in Q III and β is in Q II such that $\tan \alpha=24 / 25$ and $\sin \beta=15 / 17$, find the exact value of $\tan (\alpha-\beta)$. (Do not use a calculator.)

$$
\tan (\alpha-\beta)=\square
$$

(12 pts) 6. In the triangle below, find a and c , rounded to the nearest tenth of a unit, if $\beta=20^{\circ}, \gamma=31^{\circ}$ and $\mathrm{b}=210$.

Name \qquad

Place your answer in the space provided. You must show your work to receive credit.
(12 pts) 7. Verify the following identity (you must work with only one side at a time): $\sec ^{2} t \csc ^{2} \mathrm{t}=\sec ^{2} \mathrm{t}+\csc ^{2} \mathrm{t}$
(14 pts) 8. A water tower is located on level ground 325 feet from a building. From a window in the building it is observed that the angle of elevation to the top of the tower is 39° and the angle of depression to the bottom of the tower is 25°. (Draw and label a sketch, set up an equation(s) and solve.)
a) How tall is the tower, to the nearest foot?

b) How high is the window, to the nearest foot?

Name \qquad

Place your answer in the space provided. You must show your work to receive credit.
(14 pts) 9. A tree on a hillside casts a shadow 215 feet down the hill. If the angle of elevation of the hillside is 22° and the angle of elevation of the sun is 52°, find the height of the tree to the nearest foot. (Set up an equation(s) and solve.)
$\operatorname{sun} 8$

