Name \qquad

Place your answer(s) in the space provided. You must show your work to receive credit.

Note: There is NO partial credit for problems 1-3.
(8 pts) 1. Express the complex number $7+5 \mathrm{i}$ in trigonometric form.

(8 pts) 2. Find the smallest positive angle θ, to the nearest tenth of a degree, from the positive x -axis to the vector if $\vec{a}=\langle-5,8\rangle$

(8 pts) 3. If $\vec{a}=\langle 7,-8\rangle$ and $\vec{b}=\langle-2,7\rangle$, find $5 \vec{a}-7 \vec{b}$.

Name \qquad

Place your answer(s) in the space provided. You must show your work to receive credit.
(10 pts) 4. Find an equation of a rational function f that satisfies the following conditions: vertical asymptote: $\mathrm{x}=-2$
horizontal asymptote: $\mathrm{y}=3$
x -intercept: -4, hole at $\mathrm{x}=1$
(10 pts) 5. If $\vec{a}=120 \mathrm{lbs}$ at 130° and $\vec{b}=85 \mathrm{lbs}$ at 75°, approximate the magnitude of the resultant vector to the nearest tenth of a pound.

(16 pts) 6. Find the equations of any vertical and horizontal asymptotes and find any x and y intercepts for the function below. Write "none" in any answer box where appropriate.

Vertical asymptote(s)	$=\square$
Horizontal asymptote(s)	$=\square$
x-intercept(s)	$=\square$
y-intercept (s)	$=\square$

Name \qquad

Place your answer(s) in the space provided. You must show your work to receive credit.
(14 pts) 7. If $\vec{a}=\{8,-3\rangle$ and $\vec{b}=\{2,-7\rangle$, determine
a) the dot product of the two vectors.

b) the angle between the two vectors. (Round your answer to the nearest degree and minute.)

(12 pts) 8. If $\vec{a}=\left\langle\frac{1}{2},-3\right\rangle$ and $\vec{b}=\{-2,12\rangle$, are \vec{a} and \vec{b} parallel, perpendicular or neither?
(Remember to show work to justify your answer.)

Name \qquad

Place your answer(s) in the space provided. You must show your work to receive credit.
(14 pts) 9. A ship is traveling at $40 \mathrm{mi} / \mathrm{hr}$ in the direction $\mathrm{N} 55^{\circ} \mathrm{E}$. The current is $12 \mathrm{mi} / \mathrm{hr}$ in the direction $\mathrm{S} 23^{0} \mathrm{E}$. Find the true speed of the ship, that is, find the magnitude of the resultant vector, rounded to the nearest whole $\mathrm{mi} / \mathrm{hr}$. (Draw and label a sketch, write an equation(s) and solve.)

