1. Find an equation of the line through (1, -3) and perpendicular to the line 4x + y + 7 = 0.

A.
$$4x + y - 1 = 0$$

B.
$$4x - y - 7 = 0$$

C.
$$x + 4y + 11 = 0$$

D.
$$x - 4y - 13 = 0$$

E.
$$x - 3y + 7 = 0$$

2. Solve the inequality 2 - 3x < 5.

A.
$$x < -1$$

B.
$$x < 1$$

C.
$$x > -1$$

D.
$$x > 1$$

E.
$$x > \frac{7}{3}$$

3. Find the domain of the function $f(x) = \frac{\ln(x-1) + \sqrt{x}}{\sqrt{x+2}}$.

A.
$$x > 1$$

B.
$$x > 0$$

C.
$$x > -2$$

D.
$$0 < x < 1$$

E. all real numbers
$$x$$

- 4. Find all numbers x such that $\sin x = \sin \frac{\pi}{5}$ and $0 \le x \le 2\pi$.
- A. $\frac{\pi}{5}$ only
- B. $\frac{\pi}{5}$ and $\frac{4\pi}{5}$
- C. $\frac{\pi}{5}$ and $\frac{6\pi}{5}$
- D. $\frac{\pi}{5}$ and $\frac{9\pi}{5}$
- E. $\frac{\pi}{5}$, $\frac{4\pi}{5}$, $\frac{6\pi}{5}$, and $\frac{9\pi}{5}$

5. Find $\tan\left(\sin^{-1}\left(\frac{3}{4}\right)\right)$.

- A. $\frac{3}{5}$
- B. $\frac{4}{5}$
- C. $\frac{4}{3}$
- D. $\frac{3}{\sqrt{7}}$
- E. $\frac{4}{\sqrt{7}}$
- 6. Given the following graph of two functions f and g, g(x) =

- A. -f(x-2)
- B. 1 f(x 2)
- C. f(x+3) 1
- D. -f(x+3) 1
- E. -f(x-3)+1

7. Starting with the graph of $y = e^{-2x}$, write the equation of the graph that results from reflecting about the x-axis and then about the y-axis.

$$A. \ y = -e^{2x}$$

$$B. \ y = -e^{-2x}$$

C.
$$y = e^{2x}$$

D.
$$y = e^{-2x}$$

E.
$$y = \ln(2x)$$

8. Under ideal conditions a certain bacteria population is known to double every 5 hours. Suppose there are initially 150 bacteria. Then, after t hours the number of bacteria in the population is

A.
$$e^{5t}$$

B.
$$150e^{5t}$$

C.
$$2^{5t}$$

D.
$$2^{t/5}$$

E.
$$150 \cdot 2^{t/5}$$

9. The solution of $4^{2x-3} = 3$ is x =

A.
$$\ln 6^2$$

B.
$$\log_4 3^2$$

C.
$$\log_3 4^2 + 3$$

D.
$$\frac{1}{2}[3 + \log_4 3]$$

E.
$$\frac{1}{2}[3 + \log_3 4]$$

10.
$$\lim_{t\to 0} \frac{\sqrt{2-t} - \sqrt{2}}{t} =$$

A.
$$\frac{1}{4}$$

B.
$$-\frac{1}{2\sqrt{2}}$$

C.
$$\frac{1}{2}$$

$$D. -\frac{1}{\sqrt{2}}$$

E.
$$2\sqrt{2}$$

11.
$$\lim_{x \to 0} |x| \sin\left(\frac{1}{x^2}\right) =$$

D.
$$\infty$$

E. does not exist

12.
$$\lim_{x \to 0^+} \frac{\ln x}{x} =$$

A.
$$-\infty$$

E.
$$\infty$$

13. There are two values of a such that the function

$$f(x) = \begin{cases} x^3 & \text{if } x \le a \\ x^2 & \text{if } x > a \end{cases}$$

is continuous at the point x = a. These values are

- A. -2, 2
- B. 1, 2
- C. -1, 1
- D. 0, 1
- E. -1, 0

- 14. Suppose you drive for 60 miles at 60 miles per hour and then for 60 miles at 30 miles per hour. In miles per hour, your average velocity is
 - A. 30
 - B. 40
 - C. 42
 - D. 45
 - E. 50