Name

Student ID number

Lecturer

**Recitation Instructor** 

Time of Recitation Class

Instructions:

- 1. This package contains 14 problems, each worth 7 points, for a total of 100 points (that includes 2 bonus points for coming).
- 2. Please supply <u>all</u> information requested above and on the mark–sense sheet.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the mark–sense sheet.
- 4. No books, notes, or calculator, please.

| MA 161/161E EXAM 1                                        | Spring 2001 | February 1, 2001 |
|-----------------------------------------------------------|-------------|------------------|
| 1. The distance between the points $(1,1)$ and $(3,0)$ is |             | A. $\sqrt{5}$    |
|                                                           |             | B. 2             |
|                                                           |             | C. $\sqrt{3}$    |
|                                                           |             | D. $\sqrt{2}$    |
|                                                           |             | E. 1             |
|                                                           |             |                  |

2. The domain of the function  $f(x) = \frac{x+1}{\sqrt{|2x+3|-1}}$  is

- A.  $(-\infty, -2) \cup (-1, \infty)$ B.  $(-1, \infty)$
- C.  $(-\infty, 0) \cup (1, \infty)$
- D.  $(-\infty,\infty)$
- E. There is no solution

3. Let L be a straight line through (0,1) and parallel to the line 2x + 3y + 1 = 0. Then an equation for L is

A. 
$$3x + 2y + 3 = 0$$
  
B.  $y = -\frac{2}{3}x + 1$   
C.  $y = \frac{3}{2}x + 1$   
D.  $5x - y + 1 = 0$   
E.  $x + 5y = 0$ 

4.  $\tan(\sin^{-1} x) =$ 

| Α. | $\cos^{-1} x$            |
|----|--------------------------|
| В. | $\sqrt{1+\tan^2 x}$      |
| С. | $\sqrt{1+x^2}$           |
| D. | $\sqrt{1+x^2}$           |
|    | $x \\ x$                 |
| Е. | $\frac{x}{\sqrt{1-x^2}}$ |

Spring 2001



6. A rectangle has area 25 (square inches) and one of its sides has length L (inches). Express the perimeter P (in inches) as a function of L.

A. 
$$P = 2L + \frac{10}{L}$$
  
B. 
$$P = 2L + \frac{50}{L}$$
  
C. 
$$P = L + \frac{50}{L}$$
  
D. 
$$P = L + 50L^{2}$$
  
E. 
$$P = 2L - 25L^{2}$$



- 8. In a certain colony of bacteria population triples every 7 hours. Suppose initially there are 1,000 bacteria. After 10 hours the population is
  - A.  $1,000 \cdot 3^7$ B.  $1,000 \cdot 3^{10}$ C.  $1,000 \cdot 3^{70}$ D.  $1,000 \cdot 3^{10/7}$ E.  $1,000 \cdot 3^{1.7}$

Spring 2001

- 9. The solution(s) of the equation  $\ln(\ln x) = 0$  is (are)
- A. x = 1B. x = eC. x = 1 and eD.  $x = e^{2}$
- E. The equation has no solution

10. Given the following graph of f(x), which statement is true?



Spring 2001

February 1, 2001

11. If 
$$\lim_{x \to a} f(x) = 4$$
,  $\lim_{x \to a} g(x) = -3$ , and  $\lim_{x \to a} h(x) = 0$ , it follows that  $\lim_{x \to a} \frac{f(x)g(x)}{h(x)^2}$  is  
A. -12  
B. 0  
C.  $\infty$   
D.  $-\infty$ 

E. impossible to determine

12.  $\lim_{x \to 1} e^{x^2 - x} =$ 

A. eB.  $e^{x^2-x}$ C. 1 D. 0 E.  $\infty$ 

Spring 2001

13. If 
$$\lim_{t \to 4} s(t) = -2$$
, and  $\lim_{t \to 4} [3r(t) + 2s(t)] = -1$ , then  $\lim_{t \to 4} r(t) =$   
A. 1  
B. -1  
C. -2  
D. 0

E. cannot be determined.

14. The graph of y = f(x) is reflected about the *y*-axis, then translated down 4 units and to the right 3 units, and finally compressed horizontally by a factor of 2. The resulting graph has equation

A. 
$$y = f\left(-\left(\frac{1}{2}x - 3\right)\right) - 4$$
  
B.  $y = f\left(-\left(\frac{1}{2}x - 3\right)\right) + 4$   
C.  $y = f(-(2x - 3)) + 4$   
D.  $y = f(-(2x - 3)) - 4$   
E.  $y = f(-(2x + 3)) - 4$