Student ID number
Recitation Instructor
Time of Recitation Class

Instructions:

1. This package contains 14 problems, each worth 7 points, for a total of 100 points (that includes 2 bonus points for coming).
2. Please supply all information requested above and on the mark-sense sheet.
3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the mark-sense sheet.
4. No books, notes, or calculator, please.
5. The distance between the points $(1,1)$ and $(3,0)$ is
A. $\sqrt{5}$
B. 2
C. $\sqrt{3}$
D. $\sqrt{2}$
E. 1
6. The domain of the function $f(x)=\frac{x+1}{\sqrt{|2 x+3|-1}}$ is
A. $(-\infty,-2) \cup(-1, \infty)$
B. $(-1, \infty)$
C. $(-\infty, 0) \cup(1, \infty)$
D. $(-\infty, \infty)$
E. There is no solution
7. Let L be a straight line through $(0,1)$ and parallel to the line $2 x+3 y+1=0$. Then an equation for L is
A. $3 x+2 y+3=0$
B. $y=-\frac{2}{3} x+1$
C. $y=\frac{3}{2} x+1$
D. $5 x-y+1=0$
E. $x+5 y=0$
8. $\tan \left(\sin ^{-1} x\right)=$
A. $\cos ^{-1} x$
B. $\sqrt{1+\tan ^{2} x}$
C. $\sqrt{1+x^{2}}$
D. $\frac{\sqrt{1+x^{2}}}{x}$
E. $\frac{x}{\sqrt{1-x^{2}}}$
9. The graph of f is given. Then $f(f(0))=$

A. -2
B. 0
C. 3
D. -1
E. undefined
10. A rectangle has area 25 (square inches) and one of its sides has length L (inches). Express the perimeter P (in inches) as a function of L.
A. $P=2 L+\frac{10}{L}$
B. $P=2 L+\frac{50}{L}$
C. $P=L+\frac{50}{L}$
D. $P=L+50 L^{2}$
E. $P=2 L-25 L^{2}$
11. The graph of $y=(1-|x|)^{2}$ looks like
A.

B.

C.

D.

12. In a certain colony of bacteria population triples every 7 hours. Suppose initially there are 1,000 bacteria. After 10 hours the population is
A. $1,000 \cdot 3^{7}$
B. $1,000 \cdot 3^{10}$
C. $1,000 \cdot 3^{70}$
D. $1,000 \cdot 3^{10 / 7}$
E. $1,000 \cdot 3^{1.7}$
13. The solution(s) of the equation $\ln (\ln x)=0$ is (are)
A. $x=1$
B. $x=e$
C. $x=1$ and e
D. $x=e^{2}$
E. The equation has no solution
14. Given the following graph of $f(x)$, which statement is true?

A. $\lim _{x \rightarrow 2^{+}} f(x)=1$
B. $\lim _{x \rightarrow 2^{+}} f(x)=0$
C. $\lim _{x \rightarrow 2^{-}} f(x)$ does not exist
D. $\lim _{x \rightarrow 2} f(x)=1$ and 0
E. $\lim _{x \rightarrow 2^{-}} f(x)=1$
15. If $\lim _{x \rightarrow a} f(x)=4, \lim _{x \rightarrow a} g(x)=-3$, and $\lim _{x \rightarrow a} h(x)=0$, it follows that $\lim _{x \rightarrow a} \frac{f(x) g(x)}{h(x)^{2}}$ is
A. -12
B. 0
C. ∞
D. $-\infty$
E. impossible to determine
16. $\lim _{x \rightarrow 1} e^{x^{2}-x}=$
A. e
B. $e^{x^{2}-x}$
C. 1
D. 0
E. ∞
17. If $\lim _{t \rightarrow 4} s(t)=-2$, and $\lim _{t \rightarrow 4}[3 r(t)+2 s(t)]=-1$, then $\lim _{t \rightarrow 4} r(t)=$
A. 1
B. -1
C. -2
D. 0
E. cannot be determined.
18. The graph of $y=f(x)$ is reflected about the y-axis, then translated down 4 units and to the right 3 units, and finally compressed horizontally by a factor of 2 . The resulting graph has equation
A. $y=f\left(-\left(\frac{1}{2} x-3\right)\right)-4$
B. $y=f\left(-\left(\frac{1}{2} x-3\right)\right)+4$
C. $y=f(-(2 x-3))+4$
D. $y=f(-(2 x-3))-4$
E. $y=f(-(2 x+3))-4$
