1. $\lim _{s \rightarrow \infty} \frac{2-3 s+5 s^{2}}{4-5 s^{3}}=$
A. $-\infty$
B. -1
C. 0
D. $\frac{1}{2}$
E. 1
2. If a ball is thrown upwards with a velocity of $52 \mathrm{ft} /$ second, its height in feet after t seconds is $y=52 t-16 t^{2}$. Find the velocity after 2 seconds.
A. $20 \mathrm{ft} / \mathrm{sec}$ upward
B. $20 \mathrm{ft} / \mathrm{sec}$ downward
C. $12 \mathrm{ft} / \mathrm{sec}$ upward
D. $12 \mathrm{ft} / \mathrm{sec}$ downward
E. $0 \mathrm{ft} / \mathrm{sec}$
3. If $f(x)=x^{2} \ln x$, then $f^{\prime}(x)=$
A. 2
B. x
C. $2 x \ln x$
D. $2 x+\frac{1}{x}$
E. $x(2 \ln x+1)$
4. If $f(x)=\frac{\sin x}{x}$, then $f^{\prime}(x)=$
A. $-\frac{\cos x}{x^{2}}$
B. $-\frac{\sin x}{x^{2}}$
C. $-\frac{\sin x \cos x}{x^{2}}$
D. $\frac{x \cos x-\sin x}{x^{2}}$
E. $\frac{x \sin x-\cos x}{x^{2}}$
5. A spherical balloon is inflated in such a fashion that its radius increases at a rate of $0.5 \mathrm{~cm} / \mathrm{s}$. At a certain instant the radius is 3 cm . In $\mathrm{cm}^{3} / \mathrm{s}$, how fast is the volume increasing at that instant? (The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.)
A. 12π
B. 18π
C. 24π
D. 30π
E. 36π
6. If $f(x)=\left(x^{3}+1\right)^{10}$, then $f^{\prime}(1)=$
A. $3 \cdot 2^{9}$
B. $6 \cdot 2^{9}$
C. $10 \cdot 2^{9}$
D. $20 \cdot 2^{9}$
E. $30 \cdot 2^{9}$
7. If $f(x)=\sqrt[3]{\sin \left(x^{3}\right)}$, then $f^{\prime}(2)=$
A. $\cos 2$
B. $\frac{\cos 8}{3 \sqrt[3]{\sin ^{2} 8}}$
C. $\frac{4 \cos 8}{3 \sqrt[3]{\sin ^{2} 8}}$
D. $\frac{4 \cos 8}{\sqrt[3]{\sin ^{2} 8}}$
E. $\frac{12 \cos 8}{\sqrt[3]{\sin ^{2} 8}}$
8. If $f^{\prime}(8)=5$ and $f^{\prime}(2)=7$, evaluate $\frac{d}{d x} f\left(2 x^{2}\right)$ at $x=2$.
A. 10
B. 20
C. 35
D. 40
E. 56
9. If $f(x)=\tan x$ then $f^{\prime \prime \prime}(x)=$
A. $4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x$
B. $4 \sec ^{2} x \tan ^{2} x+\tan ^{4} x$
C. $2 \sec ^{2} x \tan ^{2} x+4 \sec ^{4} x$
D. $4 \sec ^{4} x \tan ^{2} x$
E. $2 \sec ^{4} x$
10. The slope of the line tangent to the curve $x^{2}+x^{3} y^{2}-y^{4}=11$ at the point $(2,1)$ is
A. $-\frac{1}{3}$
B. $-\frac{2}{3}$
C. -1
D. $-\frac{4}{3}$
E. 4
11. A particle moves along a straight line with equation of motion $s=t^{3}-t^{2}$. Find the value of t at which the acceleration is zero.
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$
E. $\frac{3}{2}$
12. Radium has a half life of 1600 years. How long does it take for 90% of a given amount of radium to decay?
A. $\frac{1600 \ln 10}{\ln 2}$
B. $\frac{1600 \ln 2}{\ln 10}$
C. $1600 \ln 5$
D. $1600 \ln 10$
E. $\frac{1600(\ln 10-\ln 9)}{\ln 2}$
13. If $f(x)=e^{-3 x}+2 x^{27}+3 x^{2}$. then the nineteen derivative of f evaluated at $0, f^{(19)}(0)=$
A. 0
B. 1
C. -3^{19}
D. $-3^{19} e^{-3}$
E. $-3^{-19} e^{-3}$
14. The length of a rectangle is increasing at a rate of 2 feet per second, while the width is increasing at a rate of 1 foot per second. When the length is 5 feet and the width is 3 feet, how fast is the area increasing?
A. $2 \mathrm{ft}^{2} / s$
B. $6 \mathrm{ft}^{2} / \mathrm{s}$
C. $10 \mathrm{ft}^{2} / \mathrm{s}$
D. $11 \mathrm{ft}^{2} / \mathrm{s}$
E. $13 \mathrm{ft}^{2} / s$
